scholarly journals iPSC-derived mesenchymal stromal cells are less supportive than primary MSCs for co-culture of hematopoietic progenitor cells

2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Theresa Vasko ◽  
Joana Frobel ◽  
Richard Lubberich ◽  
Tamme W. Goecke ◽  
Wolfgang Wagner
2010 ◽  
Vol 4 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Frederik Wein ◽  
Larissa Pietsch ◽  
Rainer Saffrich ◽  
Patrick Wuchter ◽  
Thomas Walenda ◽  
...  

2008 ◽  
Vol 188 (1-2) ◽  
pp. 160-169 ◽  
Author(s):  
Wolfgang Wagner ◽  
Frederik Wein ◽  
Christoph Roderburg ◽  
Rainer Saffrich ◽  
Anke Diehlmann ◽  
...  

Cytotherapy ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Annette Ludwig ◽  
Rainer Saffrich ◽  
Volker Eckstein ◽  
Thomas Bruckner ◽  
Wolfgang Wagner ◽  
...  

Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1436-1444 ◽  
Author(s):  
Y Shiota ◽  
JG Wilson ◽  
K Harjes ◽  
ED Zanjani ◽  
M Tavassoli

Abstract The adhesion of hematopoietic progenitor cells to bone marrow stromal cells is critical to hematopoiesis and involves multiple effector molecules. Stromal cell molecules that participate in this interaction were sought by analyzing the detergent-soluble membrane proteins of GBI/6 stromal cells that could be adsorbed by intact FDCP-1 progenitor cells. A single-chain protein from GBI/6 cells having an apparent molecular weight of 37 Kd was selectively adsorbed by FDCP-1 cells. This protein, designated p37, could be surface-radiolabeled and thus appeared to be exposed on the cell membrane. An apparently identical 37- Kd protein was expressed by three stromal cell lines, by Swiss 3T3 fibroblastic cells, and by FDCP-1 and FDCP-2 progenitor cells. p37 was selectively adsorbed from membrane lysates by a variety of murine hematopoietic cells, including erythrocytes, but not by human erythrocytes. Binding of p37 to cells was calcium-dependent, and was not affected by inhibitors of the hematopoietic homing receptor or the cell-binding or heparin-binding functions of fibronectin. It is proposed that p37 may be a novel adhesive molecule expressed on the surface of a variety of hematopoietic cells that could participate in both homotypic and heterotypic interactions of stromal and progenitor cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Guadalupe R. Fajardo-Orduña ◽  
Héctor Mayani ◽  
Patricia Flores-Guzmán ◽  
Eugenia Flores-Figueroa ◽  
Erika Hernández-Estévez ◽  
...  

Mesenchymal stem/stromal cells (MSCs) from bone marrow (BM) have been used in coculture systems as a feeder layer for promoting the expansion of hematopoietic progenitor cells (HPCs) for hematopoietic cell transplantation. Because BM has some drawbacks, umbilical cord blood (UCB) and placenta (PL) have been proposed as possible alternative sources of MSCs. However, MSCs from UCB and PL sources have not been compared to determine which of these cell populations has the best capacity of promoting hematopoietic expansion. In this study, MSCs from UCB and PL were cultured under the same conditions to compare their capacities to support the expansion of HPCs in vitro. MSCs were cocultured with CD34+CD38−Lin− HPCs in the presence or absence of early acting cytokines. HPC expansion was analyzed through quantification of colony-forming cells (CFCs), long-term culture-initiating cells (LTC-ICs), and CD34+CD38−Lin− cells. MSCs from UCB and PL have similar capacities to increase HPC expansion, and this capacity is similar to that presented by BM-MSCs. Here, we are the first to determine that MSCs from UCB and PL have similar capacities to promote HPC expansion; however, PL is a better alternative source because MSCs can be obtained from a higher proportion of samples.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4100-4108 ◽  
Author(s):  
N Okumura ◽  
K Tsuji ◽  
Y Ebihara ◽  
I Tanaka ◽  
N Sawai ◽  
...  

We investigated the effects of stem cell factor (SCF) on the migration of murine bone marrow hematopoietic progenitor cells (HPC) in vitro using a modification of the checkerboard assay. Chemotactic and chemokinetic activities of SCF on HPC were evaluated by the numbers of HPC migrated on positive and negative gradients of SCF, respectively. On both positive and negative gradients of SCF, HPC began to migrate after 4 hours incubation, and their numbers then increased time- dependently. These results indicated that SCF functions as a chemotactic and chemokinetic agent for HPC. Analysis of types of colonies derived from the migrated HPC showed that SCF had chemotactic and chemokinetic effects on all types of HPC. When migrating activities of other cytokines were examined, interleukin (IL)-3 and IL-11 also affected the migration of HPC, but the degrees of each effect were lower than that of SCF. The results of the present study demonstrated that SCF is one of the most potent chemotactic and chemokinetic factors for HPC and suggest that SCF may play an important role in the flow of HPC into bone marrow where stromal cells constitutively produce SCF.


Sign in / Sign up

Export Citation Format

Share Document