scholarly journals Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Doreen Reichert ◽  
Jens Friedrichs ◽  
Steffi Ritter ◽  
Theresa Käubler ◽  
Carsten Werner ◽  
...  
2010 ◽  
Vol 4 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Frederik Wein ◽  
Larissa Pietsch ◽  
Rainer Saffrich ◽  
Patrick Wuchter ◽  
Thomas Walenda ◽  
...  

2008 ◽  
Vol 188 (1-2) ◽  
pp. 160-169 ◽  
Author(s):  
Wolfgang Wagner ◽  
Frederik Wein ◽  
Christoph Roderburg ◽  
Rainer Saffrich ◽  
Anke Diehlmann ◽  
...  

Cytotherapy ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Annette Ludwig ◽  
Rainer Saffrich ◽  
Volker Eckstein ◽  
Thomas Bruckner ◽  
Wolfgang Wagner ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 85-85
Author(s):  
Michael Nemeth ◽  
David Bodine

Abstract The canonical Wnt signaling pathway is defined by Wnt ligand-mediated stabilization and nuclear translocation of β-catenin to induce target gene expression. This pathway has been demonstrated to regulate differentiation of mesenchymal tissue, which includes the cell types (e.g. osteoblasts, myofibroblasts, adipocytes) that comprise the stromal cells of the hematopoietic microenvironment. We hypothesized that loss of canonical Wnt signaling would result in disruption of the ability of stromal cells to support hematopoiesis. To test this hypothesis, we generated transgenic mice that expressed conditonal loss of function β-catenin alleles along with Cre-recombinase under the control of the inducible Mx1 promoter, which is active in bone marrow. We induced excision of β-catenin by injecting β-cateninlox/lox Mx-cre+/cre mice with 10 doses of 300 mg/ml pIpC. Whole bone marrow from treated (KO) and untreated (WT) animals was used to establish Dexter stromal cultures with an input of 1 × 106 cells/cm2 culture surface area. PCR performed on DNA isolated from KO stromal cells showed that nearly 100% deletion of β-catenin occurred with this regimen. To determine the ability of KO stroma to support hematopoiesis, irradiated KO and WT stromal cultures were seeded with 4 × 104 normal lin− cells/cm2. There were no differences in cell expansion, cell cycle activity, or apoptosis between hematopoietic cells cultured on WT vs. KO stroma. We determined the capacity of β-catenin deficient stroma to maintain hematopoietic progenitors by measuring myeloid CFU formation after 1, 2, and 3 weeks in culture. After 1 week, hematopoietic cells cultured on WT stroma contained 5-fold more CFU-GM (151.7 ± 21.4 CFU-GM/1×104 cells) than cells cultured on KO stroma (28.7 ± 4.9; n = 6, p < .001). Similar differences in CFU-GM formation were observed after 2 weeks (WT 46.5 ± 8.0 vs. KO 10.3 ± 1.7; n = 6, p< .001) and 3 weeks (WT 16.5 ± 2.8 vs. KO 2.6 ± 1.5; n = 6, p < .001) in culture. This decrease in the production of hematopoietic progenitor cells was not due to decreased numbers of stromal cells as the average number of KO stromal cells (4.8 ± 0.07 × 104/cm2) was greater than WT (3.7 ± 0.7 × 104/cm2; n = 3, p = .05). We also determined the ability of WT and KO mesenchymal progenitors to generate fibroblast colonies (CFU-F) and found no difference between WT (17 ± 1.8 CFU-F/1 × 106 bone marrow cells) and KO (15.8 ± 3.5; n = 4, p = .54). Canonical Wnt signaling has been proposed to regulate the differentiation of mesenchymal stem cells into osteoblasts. Since osteoblasts contribute to the proper regulation of hematopoiesis, we hypothesized that the depletion of hematopoietic progentiors in KO stromal cultures is due to a reduction in the number of osteoblasts. To detect osteoblasts in vitro, we performed histochemical staining to detect alkaline phosphatase (ALP) activity in WT and KO stromal cultures and scored the positive cells. We observed a significant 50% reduction in the percentage of ALP+ cells in KO stroma (13.2 ± 4.8%) compared to WT (28.0 ± 7.9%) (n = 3, p = .05). In summary, these data indicate that loss of canonical Wnt signaling results in decreased support of hematopoietic progenitors and osteoblasts. From these data, we propose a model in which canonical Wnt signaling is necessary to maintain normal numbers of osteoblasts within the bone marrow stroma and that loss of β-catenin leads to a decrease in the number of osteoblasts and a subsequent reduction in the ability of the stroma to support hematopoiesis.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1436-1444 ◽  
Author(s):  
Y Shiota ◽  
JG Wilson ◽  
K Harjes ◽  
ED Zanjani ◽  
M Tavassoli

Abstract The adhesion of hematopoietic progenitor cells to bone marrow stromal cells is critical to hematopoiesis and involves multiple effector molecules. Stromal cell molecules that participate in this interaction were sought by analyzing the detergent-soluble membrane proteins of GBI/6 stromal cells that could be adsorbed by intact FDCP-1 progenitor cells. A single-chain protein from GBI/6 cells having an apparent molecular weight of 37 Kd was selectively adsorbed by FDCP-1 cells. This protein, designated p37, could be surface-radiolabeled and thus appeared to be exposed on the cell membrane. An apparently identical 37- Kd protein was expressed by three stromal cell lines, by Swiss 3T3 fibroblastic cells, and by FDCP-1 and FDCP-2 progenitor cells. p37 was selectively adsorbed from membrane lysates by a variety of murine hematopoietic cells, including erythrocytes, but not by human erythrocytes. Binding of p37 to cells was calcium-dependent, and was not affected by inhibitors of the hematopoietic homing receptor or the cell-binding or heparin-binding functions of fibronectin. It is proposed that p37 may be a novel adhesive molecule expressed on the surface of a variety of hematopoietic cells that could participate in both homotypic and heterotypic interactions of stromal and progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document