Journal of Hematology & Oncology
Latest Publications


TOTAL DOCUMENTS

1577
(FIVE YEARS 529)

H-INDEX

79
(FIVE YEARS 27)

Published By Springer (Biomed Central Ltd.)

1756-8722, 1756-8722

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Christophe Maritaz ◽  
Sophie Broutin ◽  
Nathalie Chaput ◽  
Aurélien Marabelle ◽  
Angelo Paci

AbstractAnti-CTLA-4 and anti-PD-1/PD-L1 immune checkpoint inhibitors are therapeutic monoclonal antibodies that do not target cancer cells but are designed to reactivate or promote antitumor immunity. Dosing and scheduling of these biologics were established according to conventional drug development models, even though the determination of a maximum tolerated dose in the clinic could only be defined for anti-CTLA-4. Given the pharmacology of these monoclonal antibodies, their high interpatient pharmacokinetic variability, the actual clinical benefit as monotherapy that is observed only in a specific subset of patients, and the substantial cost of these treatments, a number of questions arise regarding the selected dose and the dosing interval. This review aims to outline the development of these immunotherapies and considers optimization options that could be used in clinical practice.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
No-Joon Song ◽  
Carter Allen ◽  
Anna E. Vilgelm ◽  
Brian P. Riesenberg ◽  
Kevin P. Weller ◽  
...  

Abstract Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) blunts the broad inflammatory response induced by damage-associated molecular patterns via binding to extracellular high mobility group box 1 and heat shock proteins, as well as regulating the downstream Siglec10-Src homology 2 domain–containing phosphatase 1 pathway. A recent randomized phase III trial evaluating CD24Fc for patients with severe COVID-19 (SAC-COVID; NCT04317040) demonstrated encouraging clinical efficacy. Methods Using a systems analytical approach, we studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial to discern the impact of CD24Fc treatment on immune homeostasis. We performed high dimensional spectral flow cytometry and measured the levels of a broad array of cytokines and chemokines to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. Results Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found that patients with severe COVID-19 had systemic hyper-activation of multiple cellular compartments, including CD8+ T cells, CD4+ T cells, and CD56+ natural killer cells. Treatment with CD24Fc blunted this systemic inflammation, inducing a return to homeostasis in NK and T cells without compromising the anti-Spike protein antibody response. CD24Fc significantly attenuated the systemic cytokine response and diminished the cytokine coexpression and network connectivity linked with COVID-19 severity and pathogenesis. Conclusions Our data demonstrate that CD24Fc rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
P. Guisado-Vasco ◽  
M. M. Carralón-González ◽  
J. Aguareles-Gorines ◽  
E. M. Martí-Ballesteros ◽  
M. D. Sánchez-Manzano ◽  
...  

Abstract Background There is an urgent need for highly efficacious antiviral therapies in immunosuppressed hosts who develop coronavirus disease (COVID-19), with special concern for those affected by hematological malignancies. Case presentation Here, we report the case of a 75-year-old male with chronic lymphocytic leukemia who was deficient in CD19+CD20+ B-lymphocyte populations due to previous treatment with anti-CD20 monoclonal antibodies. The patient presented with severe COVID-19 pneumonia due to prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and was treated with two courses of the antiviral plitidepsin on a compassionate use basis. The patient subsequently achieved an undetectable viral load, and his pneumonia resolved. Conclusions Treatment with plitidepsin was well-tolerated without any further hematological or cardiovascular toxicities. This case further supports plitidepsin as a potential antiviral drug in SARS-CoV-2 patients affected by immune deficiencies and hematological malignancies.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Helen Parry ◽  
Graham McIlroy ◽  
Rachel Bruton ◽  
Sarah Damery ◽  
Grace Tyson ◽  
...  

Abstract Background Immune suppression is a clinical feature of chronic lymphocytic leukaemia (CLL), and patients show increased vulnerability to SARS-CoV-2 infection and suboptimal antibody responses. Method We studied antibody responses in 500 patients following dual COVID-19 vaccination to assess the magnitude, correlates of response, stability and functional activity of the spike-specific antibody response with two different vaccine platforms. Results Spike-specific seroconversion post-vaccine was seen in 67% of patients compared to 100% of age-matched controls. Amongst responders, titres were 3.7 times lower than the control group. Antibody responses showed a 33% fall over the next 4 months. The use of an mRNA (n = 204) or adenovirus-based (n = 296) vaccine platform did not impact on antibody response. Male gender, BTKi therapy, prophylactic antibiotics use and low serum IgA/IgM were predictive of failure to respond. Antibody responses after CD20-targeted immunotherapy recovered 12 months post treatment. Post-vaccine sera from CLL patients with Spike-specific antibody response showed markedly reduced neutralisation of the SARS-CoV-2 delta variant compared to healthy controls. Patients with previous natural SARS-CoV-2 infection showed equivalent antibody levels and function as healthy donors after vaccination. Conclusions These findings demonstrate impaired antibody responses following dual COVID-19 vaccination in patients with CLL and further define patient risk groups. Furthermore, humoural protection against the globally dominant delta variant is markedly impaired in CLL patients and indicates the need for further optimisation of immune protection in this patient cohort.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Hengyu Li ◽  
Pinghua Yang ◽  
JingHan Wang ◽  
Jin Zhang ◽  
Qianyun Ma ◽  
...  

AbstractTumor-associated macrophages (TAMs) are major components of the tumor microenvironment (TME) which are closely associated with the tumor malignant progression. However, the regulatory mechanisms by which TAMs influence the progression of triple-negative breast cancer (TNBC) remain unclear. Here, we report that hepatic leukemia factor (HLF) acts as a novel oncoprotein in TNBC. We found that HLF was regulated by transforming growth factor-beta1 (TGF-β1) that is secreted by TAMs. Then, HLF transactivated gamma-glutamyltransferase 1 (GGT1) to promote the ferroptosis resistance, thus driving TNBC cell proliferation, metastasis and cisplatin resistance. Reciprocally, IL-6 produced by TNBC cells activated the JAK2/STAT3 axis to induce TGF-β1 secretion by TAMs, thus constituted a feed-forward circuit. The accuracy of TNBC patient prognosis could be improved by employing a combination of HLF and GGT1 values. Thus, our findings document that the interactive dialogue between TNBC cells and TAMs promotes sustained activation of HLF in tumor cells through the IL-6-TGF-β1 axis. Subsequently, HLF promotes the ferroptosis resistance in TNBC cells via GGT1 and ultimately facilitates the malignant tumor progression. Our study provides a potential target for the treatment of TNBC.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
James L. Januzzi ◽  
Joseph M. Garasic ◽  
Scott E. Kasner ◽  
Vickie McDonald ◽  
Mark C. Petrie ◽  
...  

Abstract Background The phase 2 PACE (Ponatinib Ph+ ALL and CML Evaluation) trial of ponatinib showed robust long-term benefit in relapsed Philadelphia chromosome-positive (Ph+) leukemia; arterial occlusive events (AOEs) occurred in ≥ 25% of patients based on investigator reporting. However, AOE rates vary depending on the definitions and reporting approach used. Methods To better understand clinically relevant AOEs with ponatinib, an independent cardiovascular adjudication committee reviewed 5-year AOE data from the PACE trial according to a charter-defined process and standardized event definitions. Results A total of 449 patients with chronic myeloid leukemia (CML) or Ph+ acute lymphoblastic leukemia (ALL) received ponatinib (median age 59 y; 47% female; 93% ≥ 2 prior tyrosine kinase inhibitors (TKIs); median follow-up, 37.3 months). The adjudicated AOE rate (17%) was lower than the non-adjudicated rate (i.e., rate before adjudication; 25%). The only adjudicated AOE in > 2% of patients was peripheral arterial occlusive disease (4%). Exposure-adjusted incidence of newly occurring adjudicated AOEs decreased over time. Patients with multiple baseline cardiovascular risk factors had higher adjudicated AOE rates than those without risk factors. Conclusions This independent adjudication study identified lower AOE rates than previously reported, suggesting earlier overestimation that may inaccurately reflect AOE risk with ponatinib. This trial was registered under ClinicalTrials.gov identifier NCT01207440 on September 23, 2010 (https://clinicaltrials.gov/ct2/show/NCT01207440).


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amélie Boichard ◽  
Scott M. Lippman ◽  
Razelle Kurzrock

AbstractAmplifications of oncogenic genes are often considered actionable. However, not all patients respond. Questions have therefore arisen regarding the degree to which amplifications, especially non-focal ones, mediate overexpression. We found that a subset of high-level gene amplifications (≥ 6 copies) (from The Cancer Genome Atlas database) was not over-expressed at the RNA level. Unexpectedly, focal amplifications were more frequently silenced than non-focal amplifications. Most non-focal amplifications were not silenced; therefore, non-focal amplifications, if over-expressed, may be therapeutically tractable. Furthermore, specific silencing of high-level focal or non-focal gene amplifications may explain resistance to drugs that target the relevant gene product.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
S. Verbeke ◽  
R. Perret ◽  
V. Chaire ◽  
E. Richard ◽  
V. Velasco ◽  
...  

AbstractSoft tissue sarcoma (STS) is a predominantly fatal rare malignancy with inadequate treatment options. Glycogen synthase kinase 3β (GSK-3β) is an emerging target in human malignancies. Its therapeutic relevance in STS is unknown. We analyzed the prognostic impact of GSK-3β gene and protein expression in two independent cohorts of patients with STS. We then treated STS cell lines and mice xenografts with a novel GSK-3 inhibitor 9-ING-41 alone or in combination with chemotherapy. We demonstrated that 9-ING-41 treatment induced significant STS cells apoptosis and was synergistic in vivo when combined with chemotherapy. Mechanistically, 9-ING-41 induces significant apoptosis of STS cells via suppression of NF-κB-mediated X-linked inhibitor of apoptosis protein (XIAP) expression. These data support the inclusion of patients with STS in clinical studies of 9-ING-41 alone and in combination with chemotherapy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lingling Zhu ◽  
Jiewei Liu ◽  
Jiang Chen ◽  
Qinghua Zhou

AbstractThe use of immune checkpoint blockade (ICB) using antibodies against programmed death receptor (PD)-1, PD ligand (PD-L)-1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) has redefined the therapeutic landscape in solid tumors, including skin, lung, bladder, liver, renal, and breast tumors. However, overall response rates to ICB therapy remain limited in PD-L1-negative patients. Thus, rational and effective combination therapies will be needed to address ICB treatment resistance in these patients, as well as in PD-L1-positive patients who have progressed under ICB treatment. DNA damage repair inhibitors (DDRis) may activate T-cell responses and trigger inflammatory cytokines release and eventually immunogenic cancer cell death by amplifying DNA damage and generating immunogenic neoantigens, especially in DDR-defective tumors. DDRi may also lead to adaptive PD-L1 upregulation, providing a rationale for PD-L1/PD-1 blockade. Thus, based on preclinical evidence of efficacy and no significant overlapping toxicity, some ICB/DDRi combinations have rapidly progressed to clinical testing in breast and ovarian cancers. Here, we summarize the available clinical data on the combination of ICB with DDRi agents for treating breast and ovarian cancers and discuss the mechanisms of action and other lessons learned from translational studies conducted to date. We also review potential biomarkers to select patients most likely to respond to ICB/DDRi combination therapy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhaoming Wang ◽  
Chaobo Yin ◽  
Lawrence G. Lum ◽  
Andrean Simons ◽  
George J. Weiner

AbstractResistance to anti-cancer monoclonal antibody (mAb) therapy remains a clinical challenge. Previous work in our laboratory has shown that T cell help in the form of interleukin-2 maintains long-term NK cell viability and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Lack of such T cell help may be a potential mechanism for resistance to mAb therapy. Here, we evaluate whether concomitant treatment with anti-CD3 × anti-cancer bispecific antibodies (bsAbs) can overcome this resistance by enhancing T cell help, and thereby maintaining long-term NK cell-mediated ADCC. Normal donor peripheral blood mononuclear cells were depleted of T cells, replenished with defined numbers of autologous T cells (from 0.75 to 50%) and co-cultured with mono-/bispecific antibody-treated target tumor cells for up to 7 days. At low T cell concentrations, bsAb-activated T cells (mainly CD4+ T cells) were more effective than resting T cells at maintaining NK cell viability and ADCC. Brief (4 h to 2 day) bsAb exposure was sufficient to enhance long-term ADCC by NK cells. These findings raise the hypothesis that local T cell activation mediated by systemic treatment with anti-CD3 X anti-cancer bsAb may enhance the anti-tumor efficacy of monospecific mAbs that mediate their primary therapeutic effect via NK-mediated ADCC.


Sign in / Sign up

Export Citation Format

Share Document