scholarly journals Effect of postconditioning on dynamic expression of tenascin-C and left ventricular remodeling after myocardial ischemia and reperfusion

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Junichi Taki ◽  
Anri Inaki ◽  
Hiroshi Wakabayashi ◽  
Ichiro Matsunari ◽  
Kyoko Imanaka-Yoshida ◽  
...  
Author(s):  
Petra Lujza Szabó ◽  
Christopher Dostal ◽  
Patrick Michael Pilz ◽  
Ouafa Hamza ◽  
Eylem Acar ◽  
...  

Background: Vascular stiffness and endothelial dysfunction are accelerated by acute myocardial infarction (AMI) and subsequently increase the risk for recurrent coronary events. Aim: To explore whether remote ischemic perconditioning (RIPerc) protects against coronary and aorta endothelial dysfunction as well as aortic stiffness following AMI. Methods: Male OFA-1 rats were subjected to 30 min of occlusion of the left anterior descending artery (LAD) followed by reperfusion either 3 or 28 days with or without RIPerc. Three groups: (1) sham operated (Sham, without LAD occlusion); (2) myocardial ischemia and reperfusion (MIR) and (3) MIR + RIPerc group with 3 cycles of 5 minutes of IR on hindlimb performed during myocardial ischemia were used. Assessment of vascular reactivity in isolated septal coronary arteries (non-occluded) and aortic rings as well as aortic stiffness was assessed by wire myography either 3 or 28 days after AMI, respectively. Markers of pro-inflammatory cytokines, adhesion molecules were assessed by RT-qPCR and ELISA. Results: MIR promotes impaired endothelial-dependent relaxation in septal coronary artery segments, increased aortic stiffness and adverse left ventricular remodeling. These changes were markedly attenuated in rats treated with RIPerc and associated with a significant decline in P-selectin, IL-6 and TNF-α expression either in infarcted or non-infarcted myocardial tissue samples. Conclusions: Our study for the first time demonstrated that RIPerc alleviates MIR-induced coronary artery endothelial dysfunction in non-occluded artery segments and attenuates aortic stiffness in rats. The vascular protective effects of RIPerc are associated with ameliorated inflammation and might therefore be caused by reduced inflammatory signaling.


1994 ◽  
Vol 267 (5) ◽  
pp. H1833-H1841 ◽  
Author(s):  
J. M. Hagar

Endothelin (ET)-1 is produced in response to myocardial ischemia and reperfusion. It is a potent constrictor of coronary resistance vessels and may therefore contribute to myocardial injury and postischemic microvascular dysfunction. Isolated buffer-perfused rabbit hearts, under conditions of constant flow and isovolumic contraction, underwent 60 min of global ischemia and 60 min of reperfusion after pretreatment with selective ETA receptor antagonist BQ-123 (10(-7) M) in perfusate, exogenous ET-1 (10(-11) M), or control. Release of ET increased significantly at 20 and 60 min of reperfusion. BQ-123 did not enhance the recovery of left ventricular developed pressure or coronary perfusion pressure, whereas exogenous ET tended to worsen them. Cumulative creatine kinase release over 20 min of reperfusion did not differ significantly between groups. Maximum endothelium-dependent dilation to acetylcholine (ACh) was initially 62 +/- 6, 71 +/- 6, and 63 +/- 8% (SE) of U-46619-induced preconstriction in control, BQ-123-, and ET-treated hearts. At 20 min of reperfusion it was 37 +/- 5, 73 +/- 9, and 22 +/- 5%, and at 60 min of reperfusion it was 35 +/- 7, 79 +/- 6, and 22 +/- 3% (P < 0.001 for BQ-123 vs. control at 20 min and P < 0.0001 at 60 min). Endothelium-independent dilation to nitroglycerin was unaltered by ischemia and reperfusion. Neither BQ-123 alone nor a 1-h infusion of ET (10(-10) M) altered the response to ACh in nonischemic hearts.(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 61 (4) ◽  
pp. 728-732 ◽  
Author(s):  
Bahadir Sarli ◽  
Ramazan Topsakal ◽  
Esma G. Kaya ◽  
Mahmut Akpek ◽  
Yat Yin Lam ◽  
...  

2013 ◽  
Vol 62 (18) ◽  
pp. C104-C105
Author(s):  
Bahadır Şarlı ◽  
Topsakal Ramazan ◽  
Esma G Kaya ◽  
Mahmut Akpek ◽  
Yat Yin Lam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document