microvascular dysfunction
Recently Published Documents


TOTAL DOCUMENTS

1488
(FIVE YEARS 531)

H-INDEX

69
(FIVE YEARS 12)

2022 ◽  
Vol 8 ◽  
Author(s):  
Darukeshwara Joladarashi ◽  
Yanan Zhu ◽  
Matthew Willman ◽  
Kevin Nash ◽  
Maria Cimini ◽  
...  

Diabetic cardiomyopathy (DCM) is characterized by microvascular pathology and interstitial fibrosis that leads to progressive heart failure. The mechanisms underlying DCM pathogenesis remain obscure, and no effective treatments for the disease have been available. In the present study, we observed that STK35, a novel kinase, is decreased in the diabetic human heart. High glucose treatment, mimicking hyperglycemia in diabetes, downregulated STK35 expression in mouse cardiac endothelial cells (MCEC). Knockdown of STK35 attenuated MCEC proliferation, migration, and tube formation, whereas STK35 overexpression restored the high glucose-suppressed MCEC migration and tube formation. Angiogenesis gene PCR array analysis revealed that HG downregulated the expression of several angiogenic genes, and this suppression was fully restored by STK35 overexpression. Intravenous injection of AAV9-STK35 viral particles successfully overexpressed STK35 in diabetic mouse hearts, leading to increased vascular density, suppression of fibrosis in the heart, and amelioration of left ventricular function. Altogether, our results suggest that hyperglycemia downregulates endothelial STK35 expression, leading to microvascular dysfunction in diabetic hearts, representing a novel mechanism underlying DCM pathogenesis. Our study also emerges STK35 is a novel gene therapeutic target for preventing and treating DCM.


2022 ◽  
Vol 8 ◽  
Author(s):  
Tijn P. J. Jansen ◽  
Kyra van Keeken ◽  
Regina E. Konst ◽  
Aukelien Dimitriu-Leen ◽  
Angela H. E. M. Maas ◽  
...  

Background: A large proportion of patients with angina and no obstructive coronary artery disease (ANOCA) has underlying coronary vasomotor dysfunction (CVDys), which can be diagnosed by a coronary function test (CFT). Coronary tortuosity is a common angiographic finding during the CFT. Yet, no data exist on the association between vasomotor dysfunction and coronary tortuosity.Aim: To investigate the association between CVDys and coronary tortuosity in patients with ANOCAMethods: All consecutive ANOCA patients who underwent clinically indicated CFT between February 2019 and November 2020 were included. CFT included acetylcholine spasm testing to diagnose epicardial or microvascular spasm, and adenosine testing to diagnose microvascular dysfunction (MVD). MVD was defined as an index of microvascular resistance (IMR) ≥ 25 and/or coronary flow reserve (CFR) <2.0. Coronary tortuosity, was scored (no, mild, moderate or severe) based on the angles of the curvatures in the left anterior descending (LAD) artery on angiography.Results: In total, 228 patients were included (86% female, mean age 56 ± 9 years). We found coronary artery spasm in 81% of patients and MVD in 45% of patients (15%: abnormal CFR, 30%: abnormal IMR). There were 73 patients with no tortuosity, 114 with mild tortuosity, 41 with moderate tortuosity, and no patients with severe tortuosity. No differences were found in cardiovascular risk factors or medical history, and the prevalence of CVDys did not differ between the no tortuosity, mild tortuosity and moderate tortuosity group (82, 82, and 85%, respectively).Conclusion: In this study, CVDys was not associated with coronary tortuosity. Future experimental and clinical studies on the complex interplay between coronary tortuosity, wall shear stress, endothelial dysfunction and coronary flow are warranted.


2022 ◽  
Vol 23 (2) ◽  
pp. 847
Author(s):  
Chiedozie Kenneth Ugwoke ◽  
Erika Cvetko ◽  
Nejc Umek

Obesity is a worrisomely escalating public health problem globally and one of the leading causes of morbidity and mortality from noncommunicable disease. The epidemiological link between obesity and a broad spectrum of cardiometabolic disorders has been well documented; however, the underlying pathophysiological mechanisms are only partially understood, and effective treatment options remain scarce. Given its critical role in glucose metabolism, skeletal muscle has increasingly become a focus of attention in understanding the mechanisms of impaired insulin function in obesity and the associated metabolic sequalae. We examined the current evidence on the relationship between microvascular dysfunction and insulin resistance in obesity. A growing body of evidence suggest an intimate and reciprocal relationship between skeletal muscle microvascular and glucometabolic physiology. The obesity phenotype is characterized by structural and functional changes in the skeletal muscle microcirculation which contribute to insulin dysfunction and disturbed glucose homeostasis. Several interconnected etiologic molecular mechanisms have been suggested, including endothelial dysfunction by several factors, extracellular matrix remodelling, and induction of oxidative stress and the immunoinflammatory phenotype. We further correlated currently available pharmacological agents that have deductive therapeutic relevance to the explored pathophysiological mechanisms, highlighting a potential clinical perspective in obesity treatment.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Morteza Naghavi ◽  
Stanley Kleis ◽  
Hirofumi Tanaka ◽  
Albert A. Yen ◽  
Ruoyu Zhuang ◽  
...  

Previous studies have linked peripheral microvascular dysfunction measured by arterial tonometry to high residual risk in on-statin patients. Digital thermal monitoring (DTM) of microvascular function is a new and simplified technique based on fingertip temperature measurements that has been correlated with the burden of atherosclerosis and its risk factors. Here, we report analyses of DTM data from two large US registries: Registry-I (6,084 cases) and Registry-II (1,021 cases) across 49 US outpatient clinics. DTM tests were performed using a VENDYS device during a 5-minute arm-cuff reactive hyperemia. Fingertip temperature falls during cuff inflation and rebounds after deflation. Adjusted maximum temperature rebound was reported as vascular reactivity index (VRI). VRI distributions were similar in both registries, with mean ± SD of 1.58 ± 0.53 in Registry-I and 1.52 ± 0.43 in Registry-II. In the combined dataset, only 18% had optimal VRI (≥2.0) and 82% were either poor (<1.0) or intermediate (1.0-2.0). Women had slightly higher VRI than men ( 1.62 ± 0.56 vs. 1.54 ± 0.47 , p < 0.001 ). VRI was inversely but mildly correlated with age ( r = − 0.19 , p < 0.001 ). Suboptimal VRI was found in 72% of patients <50 years, 82% of 50-70 years, and 86% of ≥70 years. Blood pressure was not correlated with VRI. In this largest registry of peripheral microvascular function measurements, suboptimal scores were highly frequent among on-treatment patients, possibly suggesting a significant residual risk. Prospective studies are warranted to validate microvascular dysfunction as an indicator of residual risk.


Vessel Plus ◽  
2022 ◽  
Author(s):  
Sarena La ◽  
Rosanna Tavella ◽  
Sivabaskari Pasupathy ◽  
John F. Beltrame

Around half of the patients undergoing an elective coronary angiogram to investigate typical stable angina symptoms are found to have non-obstructive coronary arteries (defined as < 50% stenosis). These patients are younger with a female predilection. While underlying mechanisms responsible for these presentations are heterogeneous, structural and functional abnormalities of the coronary microvasculature are highly prevalent. Thus, coronary microvascular dysfunction (CMD) is increasingly recognised as an important consideration in patients with non-obstructive coronary arteries. This review will focus on primary coronary microvascular disorders and summarise the four common clinical presentation pictures which can be considered as endotypes - Microvascular Ischaemia (formerly “Syndrome X”), Microvascular Angina, Microvascular Spasm, and Coronary Slow Flow. Furthermore, the pathophysiological mechanisms associated with CMD are also heterogenous. CMD may arise from an increased microvascular resistance, impaired microvascular dilation, and/or inducible microvascular spasm, ultimately causing myocardial ischaemia and angina. Alternatively, chest pain may arise from hypersensitivity of myocardial pain receptors rather than myocardial ischaemia. These two major abnormalities should be considered when assessing an individual clinical picture, and ultimately, the question arises whether to target the heart or the pain perception to treat the anginal symptoms.


Author(s):  
Jayanth R. Arnold ◽  
Prathap Kanagala ◽  
Charley A. Budgeon ◽  
Michael Jerosch-Herold ◽  
Gaurav S. Gulsin ◽  
...  

2022 ◽  
Author(s):  
Frank Cornelis Theodorus van der Heide

2022 ◽  
pp. 104312
Author(s):  
G. Bottari ◽  
E. Damiani ◽  
V. Confalone ◽  
C. Scorcella ◽  
E. Casarotta ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
Mostafa Samak ◽  
Diana Kaltenborn ◽  
Andreas Kues ◽  
Ferdinand Le Noble ◽  
Rabea Hinkel ◽  
...  

Microvascular dysfunction is a pathological hallmark of diabetes, and is central to the ethology of diabetes-associated cardiac events. Herein, previous studies have highlighted the role of the vasoactive micro-RNA 92a (miR-92a) in small, as well as large, animal models. In this study, we explore the effects of miR-92a on mouse and human cardiac microvascular endothelial cells (MCMEC, HCMEC), and its underlying molecular mechanisms. Diabetic HCMEC displayed impaired angiogenesis and a pronounced inflammatory phenotype. Quantitative PCR (qPCR) showed an upregulation of miR-92a in primary diabetic HCMEC. Downregulation of miR-92a by antagomir transfection in diabetic HCMEC rescued angiogenesis and ameliorated diabetic endothelial bed inflammation. Furthermore, additional analysis of potential in silico-identified miR-92a targets in diabetic HCMEC revealed the miR-92a dependent downregulation of an essential metalloprotease, ADAM10. Accordingly, downregulation of ADAM10 impaired angiogenesis and wound healing in MCMEC. In myocardial tissue slices from diabetic pigs, ADAM10 dysregulation in micro- and macro-vasculature could be shown. Altogether, our data demonstrate the role of miR-92a in cardiac microvascular dysfunction and inflammation in diabetes. Moreover, we describe for the first time the metalloprotease ADAM10 as a novel miR-92a target, mediating its anti-angiogenic effect.


Sign in / Sign up

Export Citation Format

Share Document