control release
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 108)

H-INDEX

25
(FIVE YEARS 7)

2022 ◽  
pp. 448-465
Author(s):  
Tahir Mehmood ◽  
Muhammad Kaleem ◽  
Zulfiqar Ahmad ◽  
Muhammad Waseem ◽  
Baila Ahmad ◽  
...  

Nanoemulsions are increasingly used in the food industry for the encapsulation of lipophilic compounds such as nutraceuticals, flavors, vitamins, antioxidants, and colors. The advantages of nanoemulsion-based encapsulation include increased bioavailability, higher solubility, control release, protection from chemical degradation, and incorporation of different ingredients into food products. Food industries are interested in the preparation of natural polymer-based nanoemulsions to prepare clean label products. A variety of polymers such as soya lecithin, WPI, GA, and modified starches have been used to fabricate nanoemulsion-based delivery systems for nutraceuticals and micronutrients. Hence, nanoemulsion-fortified food products have received great attention due to consumer demand for safer and healthier food products. Additionally, nanoemulsions can be used for the texture modification of food products and encapsulation as well as delivery of antimicrobial agents. The main challenge for the preparation of nanoemulsions is the selection of appropriate ingredients.


2022 ◽  
Vol 15 (1) ◽  
pp. 56
Author(s):  
Samuel Stealey ◽  
Mariam Khachani ◽  
Silviya Petrova Zustiak

Two-dimensional nanosilicate particles (NS) have shown promise for the prolonged release of small-molecule therapeutics while minimizing burst release. When incorporated in a hydrogel, the high surface area and charge of NS enable electrostatic adsorption and/or intercalation of therapeutics, providing a lever to localize and control release. However, little is known about the physio-chemical interplay between the hydrogel, NS, and encapsulated small molecules. Here, we fabricated polyethylene glycol (PEG)-NS hydrogels for the release of model small molecules such as acridine orange (AO). We then elucidated the effect of NS concentration, NS/AO incubation time, and the ability of NS to freely associate with AO on hydrogel properties and AO release profiles. Overall, NS incorporation increased the hydrogel stiffness and decreased swelling and mesh size. When individual NS particles were embedded within the hydrogel, a 70-fold decrease in AO release was observed compared to PEG-only hydrogels, due to adsorption of AO onto NS surfaces. When NS was pre-incubated and complexed with AO prior to hydrogel encapsulation, a >9000-fold decrease in AO release was observed due to intercalation of AO between NS layers. Similar results were observed for other small molecules. Our results show the potential for use of these nanocomposite hydrogels for the tunable, long-term release of small molecules.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 135
Author(s):  
Muhammad Khurshid Alam Shah ◽  
Abul Kalam Azad ◽  
Asif Nawaz ◽  
Shafi Ullah ◽  
Muhammad Shahid Latif ◽  
...  

This study aims to develop chitosan-based voriconazole nanoparticles (NPs) using spray-drying technique. The effect of surfactants and polymers on the physicochemical properties, in vitro release, and permeation of NPs was investigated. The prepared NPs containing various surfactants and polymers (e.g., Tween 20 (T20), Tween 80 (T80), sodium lauryl sulfate (SLS), propylene glycol (PG), and Polyethylene glycol-4000 (PEG-4000)) were physiochemically evaluated for size, zeta potential, drug content, percent entrapment efficiency, in vitro release, and permeation across rats’ skin. A Franz diffusion cell was used for evaluating the in vitro release and permeation profile. The voriconazole-loaded NPs were investigated for antifungal activity against Candida albicans (C. albicans). The prepared NPs were in the nano range (i.e., 160–500 nm) and positively charged. Images taken by a scanning electron microscope showed that all prepared NPs were spherical and smooth. The drug content of NPs ranged from 75% to 90%. Nanoparticle formulations exhibited a good in vitro release profile and transport voriconazole across the rat’s skin in a slow control release manner. The NPs containing SLS, T80, and PG exhibited the best penetration and skin retention profile. In addition, the formulation exhibited a potential antifungal effect against C. albicans. It was concluded that the development of chitosan NPs has a great potential for the topical delivery of voriconazole against fungal infection.


Author(s):  
Marta Slavkova ◽  
Teodora Popova ◽  
Christina Voycheva ◽  
Stanislav Bozhanov ◽  
Vania Maslarska ◽  
...  

The need for additional fluids for easy absorption is typical for elderly patients and those with dysphagia. Most often, these patients take their medication with a glass of orange juice or another liquid instead of a glass of water. We conducted a dissolution test with gastro-resistant tablets acetylsalicylic acid where different kind of orange juice or soft drink wеre added to the release medium. As a control, release medium - buffers 1.2, 4.5 and 6.8 were used. The released aspirin was determined after HPLC analysis. The obtained data were fitted to different kinetic models. The results of the dissolution test in medium buffers with added different beverage showed results similar to those obtained in pure buffer, where it is used an artificial sweetener and different, when sugar or glucose-fructose syrup was used to sweeten the beverage. The most significant change was observed in the release kinetics of the active substance.To exclude the possibility that the other beverage ingredients or excipients used to make the tablets affect the release profile of acetylsalicylic acid, we conducted a beverage-like dissolution test. Instead of a original beverage, we used water and sugar syrup, in a concentration that is declared on the label of the original beverages. The results obtained confirm that different sugar concentrations alter the release profile of acetylsalicylic acid from gastro resistant tablets when they are taken with a glass of sugar-containing beverage instead of a glass of water.


2021 ◽  
Vol 67 (No. 12) ◽  
pp. 679-699
Author(s):  
Yahya Faqir ◽  
Jiahua Ma ◽  
Yunlong Chai

In the perspective of return to nature, using scientific and technical progress for improved living standards, people began to search for solutions to alleviate environmental pollution. Researchers intend to make clean, affordable products that are gentle yet effective. Chitosan derived from the exoskeleton of crustaceans, cuticles of insects, cell walls of fungi, and some algae are renowned for many decades to exhibit biotic properties, especially anti-microbial characteristics. Here we review each ingredient for sourcing organic chitosan, with clean raw materials that can make pure, rich, and powerful products working naturally. Our study elaborates advances and utilisation of chitosan for industrial control-release fertilisers by physical, chemical, and multifaceted formulations such as water-retaining super absorbent, polyacrylic acid, and resins. Plant growth-promoting properties of chitosan as a growth regulator, pest/disease resistance, signalling regulation, effect on nuclear deformation, and apoptosis. Chitosan can improve the plant defence mechanism by stimulating photochemistry and enzymes related to photosynthesis. Furthermore, electrophysiological modification induced by chitosan can practically enable it to be utilised as a herbicide. Chitosan has an excellent role in improving soil fertility and plant growth as well as plant growth promoters. It is concluded, chitosan can play a key role in modern agriculture production and could be a valuable source promoting agricultural ecosystem sustainability. Future suggestions will be based on current achievements and also notable gaps. In addition, chitosan has a huge contribution to reducing fertilisers pollution, managing agricultural pests and pathogens in modern-day agriculture.  


2021 ◽  
Vol 18 ◽  
pp. 372-383
Author(s):  
Ryo Mitsui ◽  
Makoto Matsukawa ◽  
Kiyoko Nakagawa ◽  
Emiko Isomura ◽  
Toshie Kuwahara ◽  
...  

Author(s):  
Esther Marie JieRong Lin ◽  
Chee Leng Lay ◽  
Gomathy Sandhya Subramanian ◽  
Wui Siew Tan ◽  
Susanna Su Jan Leong ◽  
...  

Author(s):  
Sahil Hasan ◽  
Saloni Bhandari ◽  
Anshu Sharma ◽  
Poonam Garg

Emulgel systems are currently attention to the pharmaceutical sectors because of their substantial potential to act as drug delivery vehicle by incorporating a broad range of drug molecules and higher stability compared to the other dosage form like cream, lotion, gel, etc. Emulsions are either available in an oil in water or water in oil type. These are prepared by the incorporation of the emulsion into the gel with constant stirring at a moderate speed. Incorporation of emulsion into a gel makes it a dual control release system, thereby, increasing its stability. It has better drug release if we compare to other topical drug delivery system. It is non greasy because of the presence of gel phase which enhances patient compliance. Gels has a major limitation for the delivery of hydrophobic drugs, so to overcome this limitation an emulsion based approach is being used so that even a hydrophobic therapeutic drug can enjoy the unique properties of gels. In recent years, these have also been a great interest in the use of novel polymers. These emulgels are having major advantages on vesicular drug delivery systems as well as on conventional systems in various aspects. Various permeation enhancers can enhance the effect; due to this emulgels can be used as better topical drug delivery systems over current drug delivery systems. The emulsion can be use for analgesics and antifungal drugs.


Sign in / Sign up

Export Citation Format

Share Document