scholarly journals Correction to: Evolutionary divergence in tail regeneration between Xenopus laevis and Xenopus tropicalis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shouhong Wang ◽  
Yun-Bo Shi

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shouhong Wang ◽  
Yun-Bo Shi

AbstractTissue regeneration is of fast growing importance in the development of biomedicine, particularly organ replacement therapies. Unfortunately, many human organs cannot regenerate. Anuran Xenopus laevis has been used as a model to study regeneration as many tadpole organs can regenerate. In particular, the tail, which consists of many axial and paraxial tissues, such as spinal cord, dorsal aorta and muscle, commonly present in vertebrates, can fully regenerate when amputated at late embryonic stages and most of the tadpole stages. Interestingly, between stage 45 when feeding begins to stage 47, the Xenopus laevis tail cannot regenerate after amputation. This period, termed “refractory period”, has been known for about 20 years. The underlying molecular and genetic basis is unclear in part due to the difficult to carry out genetic studies in this pseudo-tetraploid species. Here we compared tail regeneration between Xenopus laevis and the highly related diploid anuran Xenopus tropicalis and found surprisingly that Xenopus tropicalis lacks the refractory period. Further molecular and genetic studies, more feasible in this diploid species, should reveal the basis for this evolutionary divergence in tail regeneration between two related species and facilitate the understanding how tissue regenerative capacity is controlled, thus with important implications for human regenerative medicine.



2017 ◽  
Vol 29 (8) ◽  
pp. 1556 ◽  
Author(s):  
S. Morrow ◽  
J. Gosálvez ◽  
C. López-Fernández ◽  
F. Arroyo ◽  
W. V. Holt ◽  
...  

There is growing concern over the effect of sperm cryopreservation on DNA integrity and the subsequent development of offspring generated from this cryopreserved material. In the present study, membrane integrity and DNA stability of Xenopus laevis and Xenopus tropicalis spermatozoa were evaluated in response to cryopreservation with or without activation, a process that happens upon exposure to water to spermatozoa of some aquatic species. A dye exclusion assay revealed that sperm plasma membrane integrity in both species decreased after freezing, more so for X. laevis than X. tropicalis spermatozoa. The sperm chromatin dispersion (SCD) test showed that for both X. tropicalis and X. laevis, activated frozen spermatozoa produced the highest levels of DNA fragmentation compared with all fresh samples and frozen non-activated samples (P < 0.05). Understanding the nature of DNA and membrane damage that occurs in cryopreserved spermatozoa from Xenopus species represents the first step in exploiting these powerful model organisms to understand the developmental consequences of fertilising with cryopreservation-damaged spermatozoa.





Author(s):  
Marcin Wlizla ◽  
Sean McNamara ◽  
Marko E. Horb




2016 ◽  
Vol 21 (4) ◽  
pp. 358-369 ◽  
Author(s):  
Miyuki Suzuki ◽  
Chiyo Takagi ◽  
Shinichirou Miura ◽  
Yuto Sakane ◽  
Makoto Suzuki ◽  
...  


2011 ◽  
Vol 171 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Joseph J. Korte ◽  
Robin M. Sternberg ◽  
Jose A. Serrano ◽  
Kara R. Thoemke ◽  
Scott M. Moen ◽  
...  


2021 ◽  
Author(s):  
Jeet H Patel ◽  
Preston A Schattinger ◽  
Evan E Takayoshi ◽  
Andrea Elizabeth Wills

Regeneration of complex tissues is initiated by an injury-induced stress response, eventually leading to activation of developmental signaling pathways, such as Wnt signaling. How early injury cues are interpreted and coupled to activation of these developmental signals and their targets is not well understood. Here, we show that Hif1α, a stress induced transcription factor, is required for tail regeneration in Xenopus tropicalis. We find that Hif1α is required for regeneration of differentiated axial tissues, including axons and muscle. Using RNA-sequencing, we find that Hif1α and Wnt converge on a broad set of genes required for posterior specification and differentiation, including the posterior hox genes. We further show that Hif1α is required for transcription via a Wnt-responsive element, a function that is conserved in both regeneration and early neural patterning. Our findings indicate a regulatory role for Hif1α in Wnt mediated gene expression across multiple tissue contexts.



Sign in / Sign up

Export Citation Format

Share Document