scholarly journals ANFIS-based rate adaptation scheme for adaptive streaming over HTTP

Author(s):  
Ye Seul Son ◽  
Hyun Jun Kim ◽  
Joon Tae Kim
2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Chenghao Liu ◽  
Miska M. Hannuksela ◽  
Moncef Gabbouj

Due to the fact that proxy-driven proxy cache management and the client-driven streaming solution of Dynamic Adaptive Streaming over HTTP (DASH) are two independent processes, some difficulties and challenges arise in media data management at the proxy cache and rate adaptation at the DASH client. This paper presents a novel client-driven joint proxy cache management and DASH rate adaptation method, named CLICRA, which moves prefetching intelligence from the proxy cache to the client. Based on the philosophy of CLICRA, this paper proposes a rate adaptation algorithm, which selects bitrates for the next media segments to be requested by using the predicted buffered media time in the client. CLICRA is realized by conveying information on the segments that are likely to be fetched subsequently to the proxy cache so that it can use the information for prefetching. Simulation results show that the proposed method outperforms the conventional segment-fetch-time-based rate adaptation and the proxy-driven proxy cache management significantly not only in streaming quality at the client but also in bandwidth and storage usage in proxy caches.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Tingpei Huang ◽  
Shibao Li ◽  
Xiaoxuan Lu ◽  
Shaoshu Gao

Rate adaptation, which dynamically chooses transmission rate provided at the physical layer according to the current channel conditions, is a fundamental resource management issue in IEEE 802.11 networks with the goal of maximizing the network throughput. Traditional rate adaptation algorithms for IEEE 802.11n networks do not consider the interference problem, which becomes much more serious due to the rapid deployment of IEEE 802.11n devices and large number of mobile terminals. In this paper, an interference-aware rate and channel adaptation scheme RaCA for intensive IEEE 802.11n networks was proposed. Firstly, RaCA leverages RSSI and CSI information together to measure the current channel conditions at the receiver side. RSSI is a coarse-grained indicator and CSI is a fine-grained indicator. Secondly, a two-stage rate adaptation scheme TSRA was designed, which can quickly adapt to optimal bit rate based on RSSI and CSI information. Finally, a quorum-based channel adaptation algorithm QCA was proposed, which does not need control channel. If channel suffers severe interferences, RaCA calls QCA to choose another channel to work on. Simulation and testbed implementation results demonstrate that RaCA achieves significant throughput gain over SampleLite and Minstrel-HT.


Sign in / Sign up

Export Citation Format

Share Document