scholarly journals Characteristic estimation of differential polynomials

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Min-Feng Chen ◽  
Zhi-Bo Huang

AbstractIn this paper, we give the characteristic estimation of a meromorphic function f with the differential polynomials $f^{l}(f^{(k)})^{n}$ f l ( f ( k ) ) n and obtain that $$\begin{aligned} T(r,f)\leq M\overline{N} \biggl(r,\frac{1}{f^{l}(f^{(k)})^{n}-a} \biggr)+S(r,f) \end{aligned}$$ T ( r , f ) ≤ M N ‾ ( r , 1 f l ( f ( k ) ) n − a ) + S ( r , f ) holds for $M=\min \{\frac{1}{l-2},6\}$ M = min { 1 l − 2 , 6 } , integers $l(\geq 2)$ l ( ≥ 2 ) , $n(\geq 1)$ n ( ≥ 1 ) , $k(\geq 1)$ k ( ≥ 1 ) , and a non-zero constant a. This quantitative estimate is an interesting and complete extension of earlier results. The value distribution of a differential monomial of meromorphic functions is also investigated.

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Jianming Qi ◽  
Jie Ding ◽  
Wenjun Yuan

We study the value distribution of a special class difference polynomial about finite order meromorphic function. Our methods of the proof are also different from ones in the previous results by Chen (2011), Liu and Laine (2010), and Liu and Yang (2009).


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Junfeng Xu ◽  
Xiaobin Zhang

We investigate the value distributions of difference polynomialsΔf(z)-af(z)nandf(z)nf(z+c)which related to two well-known differential polynomials, wheref(z)is a meromorphic function.


2005 ◽  
Vol 78 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Xiaojun Huang ◽  
Yongxing Gu

AbstractIn this paper, we prove that for a transcendental meromorphic function f(z) on the complex plane, the inequality T(r, f) < 6N (r, 1/(f2 f(k)−1)) + S(r, f) holds, where k is a positive integer. Moreover, we prove the following normality criterion: Let ℱ be a family of meromorphic functions on a domain D and let k be a positive integer. If for each ℱ ∈ ℱ, all zeros of ℱ are of multiplicity at least k, and f2 f(k) ≠ 1 for z ∈ D, then ℱ is normal in the domain D. At the same time we also show that the condition on multiple zeros of f in the normality criterion is necessary.


2016 ◽  
Vol 95 (2) ◽  
pp. 238-249
Author(s):  
KULDEEP SINGH CHARAK ◽  
SHITTAL SHARMA

In this paper, we prove some value distribution results which lead to normality criteria for a family of meromorphic functions involving the sharing of a holomorphic function by more general differential polynomials generated by members of the family, and improve some recent results. In particular, the main result of this paper leads to a counterexample to the converse of Bloch’s principle.


1995 ◽  
Vol 38 (4) ◽  
pp. 490-495 ◽  
Author(s):  
Jian-Hua Zheng

AbstractLet ƒ(z) be a transcendental meromorphic function of finite order, g(z) a transcendental entire function of finite lower order and let α(z) be a non-constant meromorphic function with T(r, α) = S(r,g). As an extension of the main result of [7], we prove thatwhere J has a positive lower logarithmic density.


2013 ◽  
Vol 57 (2) ◽  
pp. 493-504 ◽  
Author(s):  
R. Halburd ◽  
R. Korhonen

AbstractNevanlinna's second main theorem is a far-reaching generalization of Picard's theorem concerning the value distribution of an arbitrary meromorphic function f. The theorem takes the form of an inequality containing a ramification term in which the zeros and poles of the derivative f′ appear. We show that a similar result holds for special subfields of meromorphic functions where the derivative is replaced by a more general linear operator, such as higher-order differential operators and differential-difference operators. We subsequently derive generalizations of Picard's theorem and the defect relations.


Filomat ◽  
2020 ◽  
Vol 34 (13) ◽  
pp. 4287-4295 ◽  
Author(s):  
Bikash Chakraborty ◽  
Sudip Saha ◽  
Amit Pal ◽  
Jayanta Kamila

Let f be a transcendental meromorphic function defined in the complex plane C and k ? N. We consider the value distribution of the differential polynomial fq0(f(k))qk, where q0(?2), qk(?1) are integers. We obtain a quantitative estimation of the characteristic function T(r,f) in terms of N?(r, 1/fq0(f(k))qk-1). Our result generalizes the results obtained by Xu et al. (Math. Inequal. Appl., Vol. 14, PP. 93-100, 2011); Karmakar and Sahoo (Results Math., Vol. 73, 2018) for a particular class of transcendental meromorphic functions.


2016 ◽  
Vol 14 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Xiu-Min Zheng ◽  
Hong-Yan Xu

Abstract In this paper, we study the relation between the deficiencies concerning a meromorphic function f(z), its derivative f′(z) and differential-difference monomials f(z)mf(z+c)f′(z), f(z+c)nf′(z), f(z)mf(z+c). The main results of this paper are listed as follows: Let f(z) be a meromorphic function of finite order satisfying $$\mathop {\lim \,{\rm sup}}\limits_{r \to + \infty } {{T(r,\,f)} \over {T(r,\,f')}}{\rm{ &#x003C; }} + \infty ,$$ and c be a non-zero complex constant, then δ(∞, f(z)m f(z+c)f′(z))≥δ(∞, f′) and δ(∞,f(z+c)nf′(z))≥ δ(∞, f′). We also investigate the value distribution of some differential-difference polynomials taking small function a(z) with respect to f(z).


2011 ◽  
Vol 2011 ◽  
pp. 1-24
Author(s):  
Paul A. Gunsul

If is a meromorphic function in the complex plane, R. Nevanlinna noted that its characteristic function could be used to categorize according to its rate of growth as . Later H. Milloux showed for a transcendental meromorphic function in the plane that for each positive integer , as , possibly outside a set of finite measure where denotes the proximity function of Nevanlinna theory. If is a meromorphic function in the unit disk , analogous results to the previous equation exist when . In this paper, we consider the class of meromorphic functions in for which , , and as . We explore characteristics of the class and some places where functions in the class behave in a significantly different manner than those for which holds. We also explore connections between the class and linear differential equations and values of differential polynomials and give an analogue to Nevanlinna's five-value theorem.


Sign in / Sign up

Export Citation Format

Share Document