scholarly journals Windowed linear canonical transform: its relation to windowed Fourier transform and uncertainty principles

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Mawardi Bahri

AbstractThe windowed linear canonical transform is a natural extension of the classical windowed Fourier transform using the linear canonical transform. In the current work, we first remind the reader about the relation between the windowed linear canonical transform and windowed Fourier transform. It is shown that useful relation enables us to provide different proofs of some properties of the windowed linear canonical transform, such as the orthogonality relation, inversion theorem, and complex conjugation. Lastly, we demonstrate some new results concerning several generalizations of the uncertainty principles associated with this transformation.

2014 ◽  
Vol 62 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Ming-Sheng Liu ◽  
Kit Ian Kou ◽  
Joao Morais ◽  
Pei Dang

Author(s):  
Mawardi Bahri ◽  
Ryuichi Ashino

In this paper, we first introduce uncertainty principles for the quaternion Fourier transform (QFT). We then provide a different proof of the well-known properties of the quaternionic windowed Fourier transform (QWFT) using properties of the QFT which is a little bit simpler than usual. Based on uncertainty principles for the QFT and the relationship between the QFT and QWFT, we establish uncertainty principles related to the QWFT.


Author(s):  
Mawardi Bahri ◽  
Ryuichi Ashino

Based on the relationship between the Fourier transform (FT) and linear canonical transform (LCT), a logarithmic uncertainty principle and Hausdorff–Young inequality in the LCT domains are derived. In order to construct the windowed linear canonical transform (WLCT), Gabor filters associated with the LCT is introduced. Using the basic connection between the classical windowed Fourier transform (WFT) and the WLCT, a new proof of inversion formula for the WLCT is provided. This relation allows us to derive Lieb’s uncertainty principle associated with the WLCT. Some useful properties of the WLCT such as bounded, shift, modulation, switching, orthogonality relation, and characterization of range are also investigated in detail. By the Heisenberg uncertainty principle for the LCT and the orthogonality relation property for the WLCT, the Heisenberg uncertainty principle for the WLCT is established. This uncertainty principle gives information how a complex function and its WLCT relate. Lastly, the logarithmic uncertainty principle associated with the WLCT is obtained.


Author(s):  
M. Younus Bhat ◽  
Aamir H. Dar

The linear canonical transform (LCT) provides a unified treatment of the generalized Fourier transforms in the sense that it is an embodiment of several well-known integral transforms including the Fourier transform, fractional Fourier transform, Fresnel transform. Using this fascinating property of LCT, we, in this paper, constructed associated wavelet packets. First, we construct wavelet packets corresponding to nonuniform Multiresolution analysis (MRA) associated with LCT and then those corresponding to vector-valued nonuniform MRA associated with LCT. We investigate their various properties by means of LCT.


Sign in / Sign up

Export Citation Format

Share Document