spherical mean
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 38)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Francesco Grussu ◽  
Stefano B. Blumberg ◽  
Marco Battiston ◽  
Lebina S. Kakkar ◽  
Hongxiang Lin ◽  
...  

Purpose: We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI) protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI).Methods: We select subsets of measurements within lengthy pilot scans, without identifying tissue parameters for which to optimise for. We use the “select and retrieve via direct upsampling” (SARDU-Net) algorithm, made of a selector, identifying measurement subsets, and a predictor, estimating fully-sampled signals from the subsets. We implement both using artificial neural networks, which are trained jointly end-to-end. We deploy the algorithm on brain (32 diffusion-/T1-weightings) and prostate (16 diffusion-/T2-weightings) DRI scans acquired on three healthy volunteers on two separate 3T Philips systems each. We used SARDU-Net to identify sub-protocols of fixed size, assessing reproducibility and testing sub-protocols for their potential to inform multi-contrast analyses via the T1-weighted spherical mean diffusion tensor (T1-SMDT, brain) and hybrid multi-dimensional MRI (HM-MRI, prostate) models, for which sub-protocol selection was not optimised explicitly.Results: In both brain and prostate, SARDU-Net identifies sub-protocols that maximise information content in a reproducible manner across training instantiations using a small number of pilot scans. The sub-protocols support T1-SMDT and HM-MRI multi-contrast modelling for which they were not optimised explicitly, providing signal quality-of-fit in the top 5% against extensive sub-protocol comparisons.Conclusions: Identifying economical but informative qMRI protocols from subsets of rich pilot scans is feasible and potentially useful in acquisition-time-sensitive applications in which there is not a qMRI model of choice. SARDU-Net is demonstrated to be a robust algorithm for data-driven, model-free protocol design.


2021 ◽  
Author(s):  
Marco Pizzolato ◽  
Mariam Andersson ◽  
Erick Jorge Canales-Rodriguez ◽  
Jean-Philippe Thiran ◽  
Tim B Dyrby

In magnetic resonance imaging, the application of a strong diffusion weighting suppresses the signal contributions from the less diffusion-restricted constituents of the brain's white matter, thus enabling the estimation of the transverse relaxation time T2 that arises from the more diffusion-restricted constituents such as the axons. However, the presence of cell nuclei and vacuoles can confound the estimation of the axonal T2, as diffusion within those structures is also restricted, causing the corresponding signal to survive the strong diffusion weighting. We devise an estimator of the axonal T2 based on the directional spherical variance of the strongly diffusion-weighted signal. The spherical variance T2 estimates are insensitive to the presence of isotropic contributions to the signal like those provided by cell nuclei and vacuoles. We show that with a strong diffusion weighting these estimates differ from those obtained using the directional spherical mean of the signal which contains both axonal and isotropically-restricted contributions. Our findings hint at the presence of an MRI-visible isotropically-restricted contribution to the signal in the white matter ex vivo fixed tissue (monkey) at 7T, and do not allow us to discard such a possibility also for in vivo human data collected with a clinical 3T system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Johnson ◽  
Antonio Ricciardi ◽  
Wallace Brownlee ◽  
Baris Kanber ◽  
Ferran Prados ◽  
...  

Background: Neurite orientation dispersion and density imaging (NODDI) and the spherical mean technique (SMT) are diffusion MRI methods providing metrics with sensitivity to similar characteristics of white matter microstructure. There has been limited comparison of changes in NODDI and SMT parameters due to multiple sclerosis (MS) pathology in clinical settings.Purpose: To compare group-wise differences between healthy controls and MS patients in NODDI and SMT metrics, investigating associations with disability and correlations with diffusion tensor imaging (DTI) metrics.Methods: Sixty three relapsing-remitting MS patients were compared to 28 healthy controls. NODDI and SMT metrics corresponding to intracellular volume fraction (vin), orientation dispersion (ODI and ODE), diffusivity (D) (SMT only) and isotropic volume fraction (viso) (NODDI only) were calculated from diffusion MRI data, alongside DTI metrics (fractional anisotropy, FA; axial/mean/radial diffusivity, AD/MD/RD). Correlations between all pairs of MRI metrics were calculated in normal-appearing white matter (NAWM). Associations with expanded disability status scale (EDSS), controlling for age and gender, were evaluated. Patient-control differences were assessed voxel-by-voxel in MNI space controlling for age and gender at the 5% significance level, correcting for multiple comparisons. Spatial overlap of areas showing significant differences were compared using Dice coefficients.Results: NODDI and SMT show significant associations with EDSS (standardised beta coefficient −0.34 in NAWM and −0.37 in lesions for NODDI vin; 0.38 and −0.31 for SMT ODE and vin in lesions; p < 0.05). Significant correlations in NAWM are observed between DTI and NODDI/SMT metrics. NODDI vin and SMT vin strongly correlated (r = 0.72, p < 0.05), likewise NODDI ODI and SMT ODE (r = −0.80, p < 0.05). All DTI, NODDI and SMT metrics detect widespread differences between patients and controls in NAWM (12.57% and 11.90% of MNI brain mask for SMT and NODDI vin, Dice overlap of 0.42).Data Conclusion: SMT and NODDI detect significant differences in white matter microstructure between MS patients and controls, concurring on the direction of these changes, providing consistent descriptors of tissue microstructure that correlate with disability and show alterations beyond focal damage. Our study suggests that NODDI and SMT may play a role in monitoring MS in clinical trials and practice.


2021 ◽  
Author(s):  
Aneesh Sikka ◽  
Triveni Sodimalla ◽  
NAGARAJU YALAVARTHI

Abstract Silver nanoparticles can be biosynthesized from bacteria, fungi, and plant extracts but due to their ability to synthesize nanoparticles in varying sizes and shapes at ease, bacterial has drawn interest. Bacterial based biosynthesis is effective, inexpensive, and simple thus, Pseudomonas fluorescence cell filtrates were used to synthesize silver nanoparticles in the present study. The chromatic shifts (yellow to brown) in the media after overnight incubation and the absorption of UV-Vis spectra at 420 nm confirmed the biosynthesis of AgNP’s. Besides that, the SPR analysis of AgNP’s showed a 400–500 nm band width, supporting the formation of silver nanoparticles and their small size with a uniform shape. AgNP’s transmission electron microscopy (TEM) images confirmed their shape as quasi spherical, mean size as 30 nm and anisotropy. From the Zeta potential analysis (-42.7 mV at pH = 7 with a single peak), highly repulsive nature of nanoparticles was confirmed. On the other hand, bio-fabricated silver nanoparticles were tested for antifungal activity against Fusarium udum and Aspergillus niger under in vitro conditions. At 150 ppm concentration of AgNP’s, Fusarium udum and Aspergillus niger were inhibited up to 100 and 80.50 %, respectively. In conclusion, synthesis of nanoparticle with aqueous Pseudomonas fluorescence extract is simple and environmentally benign.


2021 ◽  
pp. 507-520
Author(s):  
Elina Shishkina
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document