scholarly journals Elliptic problem driven by different types of nonlinearities

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Debajyoti Choudhuri ◽  
Dušan D. Repovš

AbstractIn this paper we establish the existence and multiplicity of nontrivial solutions to the following problem: $$\begin{aligned} \begin{aligned} (-\Delta )^{\frac{1}{2}}u+u+\bigl(\ln \vert \cdot \vert * \vert u \vert ^{2}\bigr)&=f(u)+\mu \vert u \vert ^{- \gamma -1}u,\quad \text{in }\mathbb{R}, \end{aligned} \end{aligned}$$ ( − Δ ) 1 2 u + u + ( ln | ⋅ | ∗ | u | 2 ) = f ( u ) + μ | u | − γ − 1 u , in  R , where $\mu >0$ μ > 0 , $(*)$ ( ∗ ) is the convolution operation between two functions, $0<\gamma <1$ 0 < γ < 1 , f is a function with a certain type of growth. We prove the existence of a nontrivial solution at a certain mountain pass level and another ground state solution when the nonlinearity f is of exponential critical growth.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang

AbstractIn this article, we consider the following quasilinear Schrödinger–Poisson system $$ \textstyle\begin{cases} -\Delta u+V(x)u-u\Delta (u^{2})+K(x)\phi (x)u=g(x,u), \quad x\in \mathbb{R}^{3}, \\ -\Delta \phi =K(x)u^{2}, \quad x\in \mathbb{R}^{3}, \end{cases} $$ { − Δ u + V ( x ) u − u Δ ( u 2 ) + K ( x ) ϕ ( x ) u = g ( x , u ) , x ∈ R 3 , − Δ ϕ = K ( x ) u 2 , x ∈ R 3 , where $V,K:\mathbb{R}^{3}\rightarrow \mathbb{R}$ V , K : R 3 → R and $g:\mathbb{R}^{3}\times \mathbb{R}\rightarrow \mathbb{R}$ g : R 3 × R → R are continuous functions; g is of subcritical growth and has some monotonicity properties. The purpose of this paper is to find the ground state solution of (0.1), i.e., a nontrivial solution with the least possible energy by taking advantage of the generalized Nehari manifold approach, which was proposed by Szulkin and Weth. Furthermore, infinitely many geometrically distinct solutions are gained while g is odd in u.


2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


2018 ◽  
Vol 9 (1) ◽  
pp. 108-123 ◽  
Author(s):  
Claudianor O. Alves ◽  
Grey Ercole ◽  
M. Daniel Huamán Bolaños

Abstract We prove the existence of at least one ground state solution for the semilinear elliptic problem \left\{\begin{aligned} \displaystyle-\Delta u&\displaystyle=u^{p(x)-1},\quad u% >0,\quad\text{in}\ G\subseteq\mathbb{R}^{N},\ N\geq 3,\\ \displaystyle u&\displaystyle\in D_{0}^{1,2}(G),\end{aligned}\right. where G is either {\mathbb{R}^{N}} or a bounded domain, and {p\colon G\to\mathbb{R}} is a continuous function assuming critical and subcritical values.


2007 ◽  
Vol 2007 ◽  
pp. 1-21
Author(s):  
Tsung-Fang Wu

We consider the elliptic problem−Δu+u=b(x)|u|p−2u+h(x)inΩ,u∈H01(Ω), where2<p<(2N/(N−2)) (N≥3), 2<p<∞ (N=2), Ωis a smooth unbounded domain inℝN, b(x)∈C(Ω), andh(x)∈H−1(Ω). We use the shape of domainΩto prove that the above elliptic problem has a ground-state solution if the coefficientb(x)satisfiesb(x)→b∞>0as|x|→∞andb(x)≥cfor some suitable constantsc∈(0,b∞), andh(x)≡0. Furthermore, we prove that the above elliptic problem has multiple positive solutions if the coefficientb(x)also satisfies the above conditions,h(x)≥0and0<‖h‖H−1<(p−2)(1/(p−1))(p−1)/(p−2)[bsupSp(Ω)]1/(2−p), whereS(Ω)is the best Sobolev constant of subcritical operator inH01(Ω)andbsup=supx∈Ωb(x).


Sign in / Sign up

Export Citation Format

Share Document