scholarly journals Existence of a unique weak solution to a non-autonomous time-fractional diffusion equation with space-dependent variable order

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Karel Van Bockstal

AbstractIn this contribution, we investigate an initial-boundary value problem for a fractional diffusion equation with Caputo fractional derivative of space-dependent variable order where the coefficients are dependent on spatial and time variables. We consider a bounded Lipschitz domain and a homogeneous Dirichlet boundary condition. Variable-order fractional differential operators originate in anomalous diffusion modelling. Using the strongly positive definiteness of the governing kernel, we establish the existence of a unique weak solution in $u\in \operatorname{L}^{\infty } ((0,T),\operatorname{H}^{1}_{0}( \Omega ) )$ u ∈ L ∞ ( ( 0 , T ) , H 0 1 ( Ω ) ) to the problem if the initial data belongs to $\operatorname{H}^{1}_{0}(\Omega )$ H 0 1 ( Ω ) . We show that the solution belongs to $\operatorname{C} ([0,T],{\operatorname{H}^{1}_{0}(\Omega )}^{*} )$ C ( [ 0 , T ] , H 0 1 ( Ω ) ∗ ) in the case of a Caputo fractional derivative of constant order. We generalise a fundamental identity for integro-differential operators of the form $\frac{\mathrm{d}}{\mathrm{d}t} (k\ast v)(t)$ d d t ( k ∗ v ) ( t ) to a convolution kernel that is also space-dependent and employ this result when searching for more regular solutions. We also discuss the situation that the domain consists of separated subdomains.

2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 695-699 ◽  
Author(s):  
Sheng-Ping Yan ◽  
Wei-Ping Zhong ◽  
Xiao-Jun Yang

In this paper, we suggest the series expansion method for finding the series solution for the time-fractional diffusion equation involving Caputo fractional derivative.


Author(s):  
А.К. Баззаев

В работе рассматриваются локально-одномерные схемы для уравнения диффузии дробного порядка с дробной производной в младших членах с граничными условиями первого рода. С помощью принципа максимума получена априорная оценка для решения разностной задачи в равномерной метрике. Доказаны устойчивость и сходимость построенных локально-одномерных схем.


2016 ◽  
Vol 26 (01) ◽  
pp. 1650013 ◽  
Author(s):  
Guo-Cheng Wu ◽  
Dumitru Baleanu ◽  
He-Ping Xie ◽  
Sheng-Da Zeng

Discrete fractional calculus is suggested in diffusion modeling in porous media. A variable-order fractional diffusion equation is proposed on discrete time scales. A function of the variable order is constructed by a chaotic map. The model shows some new random behaviors in comparison with other variable-order cases.


2013 ◽  
Vol 10 (02) ◽  
pp. 1341001 ◽  
Author(s):  
LEEVAN LING ◽  
MASAHIRO YAMAMOTO

We consider the solutions of a space–time fractional diffusion equation on the interval [-1, 1]. The equation is obtained from the standard diffusion equation by replacing the second-order space derivative by a Riemann–Liouville fractional derivative of order between one and two, and the first-order time derivative by a Caputo fractional derivative of order between zero and one. As the fundamental solution of this fractional equation is unknown (if exists), an eigenfunction approach is applied to obtain approximate fundamental solutions which are then used to solve the space–time fractional diffusion equation with initial and boundary values. Numerical results are presented to demonstrate the effectiveness of the proposed method in long time simulations.


2020 ◽  
Vol 18 (04) ◽  
pp. 615-638 ◽  
Author(s):  
Xiangcheng Zheng ◽  
Hong Wang

We prove wellposedness of a variable-order linear space-time fractional diffusion equation in multiple space dimensions. In addition we prove that the regularity of its solutions depends on the behavior of the variable order (and its derivatives) at time [Formula: see text], in addition to the usual smoothness assumptions. More precisely, we prove that its solutions have full regularity like its integer-order analogue if the variable order has an integer limit at [Formula: see text] or have certain singularity at [Formula: see text] like its constant-order fractional analogue if the variable order has a non-integer value at time [Formula: see text].


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Y. J. Choi ◽  
S. K. Chung

We consider finite element Galerkin solutions for the space fractional diffusion equation with a nonlinear source term. Existence, stability, and order of convergence of approximate solutions for the backward Euler fully discrete scheme have been discussed as well as for the semidiscrete scheme. The analytical convergent orders are obtained asO(k+hγ˜), whereγ˜is a constant depending on the order of fractional derivative. Numerical computations are presented, which confirm the theoretical results when the equation has a linear source term. When the equation has a nonlinear source term, numerical results show that the diffusivity depends on the order of fractional derivative as we expect.


Sign in / Sign up

Export Citation Format

Share Document