series expansion method
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 13)

H-INDEX

22
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 935
Author(s):  
Luca Perfetto ◽  
Gabriele D’Antona

This work presents a novel diagnostic method to localize Partial Discharges (PDs) inside Medium Voltage (MV) and High Voltage (HV) equipment. The method is well suited for that equipment presenting a bounded domain with fixed Boundary Conditions (BCs) such as Oil-Filled Power Transformers (OFPTs), Air Insulated Switchgears (AISs), Gas Insulated Switchgears (GISs) or Gas Insulated Transmission Lines (GILs). It is based on Electromagnetic (EM) measurements which are used to reconstruct the EM field produced by the PD and localize the PD itself. The reconstruction and localization tasks are based on the eigenfunctions series expansion method which intrinsically accounts for the physical information of the propagation phenomenon. This fact makes the proposed diagnostic method very robust and accurate even in real and complex scenarios. The promising experimental results, obtained in two different test cases, confirmed the ability and powerfulness of the proposed PD localization method.


Author(s):  
E. P. Inyang ◽  
E. P. Inyang ◽  
I. O. Akpan ◽  
J. E. Ntibi ◽  
E. S. William

A class of Yukawa potential is adopted as the quark-antiquark interaction potential for studying the mass spectra of heavy mesons. The potential was made to be temperature-dependent by replacing the screening parameter with Debye mass. We solved the radial Schrödinger equation analytically using the series expansion method and obtained the energy eigenvalues. The present results are applied for calculating the mass spectra of heavy mesons such as charmonium and bottomonium . Two special cases were considered when some of the potential parameters were set to zero, resulting into Hellmann potential, and Coulomb potential, respectively. The present potential provides satisfying results in comparison with experimental data and the work of other researchers.


Author(s):  
Kha Van Tran ◽  
Trung Nhu Nguyen

Summary Downward continuation is a very useful technique in the interpretation of potential field data. It would enhance the short wavelength of the gravity anomalies or accentuate the details of the source distribution. Taylor series expansion method has been proposed to be one of the best downward continued methods. However, the method using high-order vertical derivatives leads to low accuracy and instability results in many cases. In this paper, we propose a new method using a combination of Taylor series expansion and upward continuation for computing vertical derivatives. This method has been tested on the gravitational anomaly of infinite horizontal cylinder in both cases with and without random noise for higher accurate and stable than Hilbert transform method and Laplace equation method, especially in the case of noise input data. This vertical derivative method is applied successfully to calculate the downward continuation according to Taylor series expansion method. The downward continuation is also tested on both complex synthetic models and real data in the East Vietnam Sea (South China Sea). The results reveal that by calculating this new vertical derivative, the downward continuation method gave higher accurate and stable than the previous downward continuation methods.


Sign in / Sign up

Export Citation Format

Share Document