scholarly journals On periodic solutions of a discrete Nicholson’s dual system with density-dependent mortality and harvesting terms

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Rajendiran Eswari ◽  
Jehad Alzabut ◽  
Mohammad Esmael Samei ◽  
Hui Zhou

AbstractIn this study, we discuss the existence of positive periodic solutions of a class of discrete density-dependent mortal Nicholson’s dual system with harvesting terms. By means of the continuation coincidence degree theorem, a set of sufficient conditions, which ensure that there exists at least one positive periodic solution, are established. A numerical example with graphical simulation of the model is provided to examine the validity of the main results.

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Chen ◽  
Lijuan Wang

This paper is concerned with the periodic solutions for a class of Nicholson-type delay systems with nonlinear density-dependent mortality terms. By using coincidence degree theory, some criteria are obtained to guarantee the existence of positive periodic solutions of the model. Moreover, an example and a numerical simulation are given to illustrate our main results.


2008 ◽  
Vol 01 (03) ◽  
pp. 327-337 ◽  
Author(s):  
YAKUI XUE ◽  
AIHUA KANG ◽  
ZHEN JIN

In this paper, we considered an eco-epidemic model with impulsive birth. By using the coincidence degree theorem, a set of easily verifiable sufficient conditions are obtained for the existence of at least one strictly positive periodic solutions.


2010 ◽  
Vol 2010 ◽  
pp. 1-22 ◽  
Author(s):  
Wenjie Qin ◽  
Zhijun Liu

A discrete time non-autonomous two-species competitive system with delays is proposed, which involves the influence of many generations on the density of species population. Sufficient conditions for permanence of the system are given. When the system is periodic, by using the continuous theorem of coincidence degree theory and constructing a suitable Lyapunov discrete function, sufficient conditions which guarantee the existence and global attractivity of positive periodic solutions are obtained. As an application, examples and their numerical simulations are presented to illustrate the feasibility of our main results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Tursuneli Niyaz ◽  
Ahmadjan Muhammadhaji

This paper studies a class of periodicnspecies cooperative Lotka-Volterra systems with continuous time delays and feedback controls. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin, some new sufficient conditions on the existence of positive periodic solutions are established.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmadjan Muhammadhaji ◽  
Zhidong Teng

Two classes of periodicN-species Lotka-Volterra facultative mutualism systems with distributed delays are discussed. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin and the Lyapunov function method, some new sufficient conditions on the existence and global attractivity of positive periodic solutions are established.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfei Gao ◽  
P. J. Y. Wong ◽  
Y. H. Xia ◽  
Xiaoqing Yuan

Based on Mawhin's coincidence degree theory, sufficient conditions are obtained for the existence of at leasttwopositive periodic solutions for a plant-hare model with toxin-determined functional response (nonmonotone). Some new technique is used in this paper, because standard arguments in the literature are not applicable.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Yongzhi Liao ◽  
Yongkun Li ◽  
Xiaoyan Dou

By applying Mawhin’s continuation theorem of coincidence degree theory, we study the existence of multiple positive periodic solutions for a Gilpin-Ayala competition predator-prey system with harvesting terms and obtain some sufficient conditions for the existence of multiple positive periodic solutions for the system under consideration. The result of this paper is completely new. An example is employed to illustrate our result.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Huilan Wang ◽  
Zhengqiu Zhang ◽  
Weiping Zhou

By using continuation theorem of coincidence degree theory, sufficient conditions of the existence of positive periodic solutions are obtained for a generalized predator-prey system with diffusion and delays. In this paper, we construct a V-function to make the prior estimation for periodic solutions, which makes the discussion more concise. Moreover, to compute the mapping's topological degree, a polynomial function matrix is constructed straightforwardly as a homotopic mapping for the generalized one, which improves the methods of computation on topological degree for a generalized mapping.


2021 ◽  
Vol 7 (2) ◽  
pp. 3083-3096
Author(s):  
Tuersunjiang Keyoumu ◽  
◽  
Wanbiao Ma ◽  
Ke Guo

<abstract><p>In this paper, a dynamic model of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) with periodic coefficients is proposed and studied. By using the continuation theorem of the coincidence degree theory, we obtain some sufficient conditions for the existence of positive periodic solutions of the model. The periodic model degenerates to an autonomous case, and our conditions can be degenerated to the basic reproductive number $ R_0 &gt; 1 $. Finally, we give some numerical simulations to illustrate our main theoretical results.</p></abstract>


2005 ◽  
Vol 2005 (2) ◽  
pp. 153-169 ◽  
Author(s):  
Fengde Chen

With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of a delayed ratio-dependent predator-prey system with stage structure for predator. The approach involves some new technique of priori estimate. For the system without delay, by constructing a suitable Lyapunov function, some sufficient conditions which guarantee the existence of a unique global attractive positive periodic solution are obtained. Those results have further applications in population dynamics.


Sign in / Sign up

Export Citation Format

Share Document