scholarly journals Circulating leptin and its muscle gene expression in Nellore cattle with divergent feed efficiency

Author(s):  
Lúcio Flávio Macedo Mota ◽  
Cristina Moreira Bonafé ◽  
Pâmela Almeida Alexandre ◽  
Miguel Henrique Santana ◽  
Francisco José Novais ◽  
...  
2005 ◽  
Vol 280 (10) ◽  
pp. 9719-9727 ◽  
Author(s):  
Yan Liu ◽  
Sanjay Sinha ◽  
Oliver G. McDonald ◽  
Yueting Shang ◽  
Mark H. Hoofnagle ◽  
...  

2004 ◽  
Vol 18 (3) ◽  
pp. 522-524 ◽  
Author(s):  
Takeshi Nikawa ◽  
Kazumi Ishidoh ◽  
Katsuya Hirasaka ◽  
Ibuki Ishihara ◽  
Madoka Ikemoto ◽  
...  

2010 ◽  
Vol 88 (4) ◽  
pp. 1349-1357 ◽  
Author(s):  
D. K. Walker ◽  
E. C. Titgemeyer ◽  
T. J. Baxa ◽  
K. Y. Chung ◽  
D. E. Johnson ◽  
...  

BMC Genetics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
I-Hsuan Lin ◽  
Junn-Liang Chang ◽  
Kate Hua ◽  
Wan-Chen Huang ◽  
Ming-Ta Hsu ◽  
...  

Author(s):  
Ferdinand von Walden ◽  
Rodrigo Fernandez-Gonzalo ◽  
Jessica Maria Norrbom ◽  
Eric B. Emanuelsson ◽  
Vandre C. Figueiredo ◽  
...  

Mitochondrial derived peptides (MDPs) humanin (HN) and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis and metabolism. Circulating levels of MDPs are altered in chronic diseases such as diabetes type 2 and chronic kidney disease. Whether acute resistance (RE) or endurance (EE) exercise modulates circulating levels of HN and MOTS-c in humans is unknown. Following familiarization, subjects were randomized to EE (n=10, 45 min cycling at 70% of estimated VO2max), RE (n=10, 4 sets x 7RM, leg press and knee extension), or control (CON, n=10). Skeletal muscle biopsies and blood samples were collected before and at 30 minutes and 3 hours following exercise. Plasma concentration of HN and MOTS-c, skeletal muscle MOTS-c as well as gene expression of exercise related genes were analyzed. Acute EE and RE promoted changes in skeletal muscle gene expression typically seen in response to each exercise modality (c-Myc, 45S pre-rRNA, PGC-1α-total and PGC-1α-ex1b). At rest, circulating levels of HN were positively correlated to MOTS-c levels and age. Plasma levels of MDPs were not correlated to fitness outcomes (VO2max, leg strength or muscle mitochondrial (mt) DNA copy number). Circulating levels of HN were significantly elevated by acute EE but not RE. MOTS-C levels showed a trend to increase after EE. These results indicate that plasma MDP levels are not related to fitness status but that acute EE increases circulating levels of MDPs, in particular HN.


2000 ◽  
Vol 278 (6) ◽  
pp. H1736-H1743 ◽  
Author(s):  
Lei Wei ◽  
Wei Zhou ◽  
Lu Wang ◽  
Robert J. Schwartz

RhoA GTPase, a regulator of actin cytoskeleton, is also involved in regulating c- fos gene expression through its effect on serum response factor (SRF) transcriptional activity. We have also shown that RhoA plays a critical role in myogenesis and regulates expression of SRF-dependent muscle genes, including skeletal α-actin. In the present study, we examined whether the RhoA signaling pathway cross talks with other myogenic signaling pathways to modulate skeletal α-actin promoter activity in myoblasts. We found that extracellular matrix proteins and the β1-integrin stimulated RhoA-dependent activation of the α-actin promoter. The muscle-specific isoform β1Dselectively activated the α-actin promoter in concert with RhoA but inhibited the c- fos promoter. In addition, focal adhesion kinase (FAK) and phosphatidylinositol (PI) 3-kinase were required for full activation of the α-actin promoter by RhoA. Expression of a dominant negative mutant of FAK, application of wortmannin to cultured myoblasts, or expression of a dominant negative mutant of PI 3-kinase inhibited α-actin promoter activity induced by RhoA. These results suggest that RhoA, β1-integrin, FAK, and PI 3-kinase serve together as an important signaling network in regulating muscle gene expression.


Sign in / Sign up

Export Citation Format

Share Document