scholarly journals GCAT-SEEKquence: Genome Consortium for Active Teaching of Undergraduates through Increased Faculty Access to Next-Generation Sequencing Data

2011 ◽  
Vol 10 (4) ◽  
pp. 342-345 ◽  
Author(s):  
Vincent P. Buonaccorsi ◽  
Michael D. Boyle ◽  
Deborah Grove ◽  
Craig Praul ◽  
Eric Sakk ◽  
...  

To transform undergraduate biology education, faculty need to provide opportunities for students to engage in the process of science. The rise of research approaches using next-generation (NextGen) sequencing has been impressive, but incorporation of such approaches into the undergraduate curriculum remains a major challenge. In this paper, we report proceedings of a National Science Foundation–funded workshop held July 11–14, 2011, at Juniata College. The purpose of the workshop was to develop a regional research coordination network for undergraduate biology education (RCN/UBE). The network is collaborating with a genome-sequencing core facility located at Pennsylvania State University (University Park) to enable undergraduate students and faculty at small colleges to access state-of-the-art sequencing technology. We aim to create a database of references, protocols, and raw data related to NextGen sequencing, and to find innovative ways to reduce costs related to sequencing and bioinformatics analysis. It was agreed that our regional network for NextGen sequencing could operate more effectively if it were partnered with the Genome Consortium for Active Teaching (GCAT) as a new arm of that consortium, entitled GCAT-SEEK(quence). This step would also permit the approach to be replicated elsewhere.

Author(s):  
Anne Krogh Nøhr ◽  
Kristian Hanghøj ◽  
Genis Garcia Erill ◽  
Zilong Li ◽  
Ida Moltke ◽  
...  

Abstract Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panagiotis Moulos

Abstract Background The relentless continuing emergence of new genomic sequencing protocols and the resulting generation of ever larger datasets continue to challenge the meaningful summarization and visualization of the underlying signal generated to answer important qualitative and quantitative biological questions. As a result, the need for novel software able to reliably produce quick, comprehensive, and easily repeatable genomic signal visualizations in a user-friendly manner is rapidly re-emerging. Results recoup is a Bioconductor package for quick, flexible, versatile, and accurate visualization of genomic coverage profiles generated from Next Generation Sequencing data. Coupled with a database of precalculated genomic regions for multiple organisms, recoup offers processing mechanisms for quick, efficient, and multi-level data interrogation with minimal effort, while at the same time creating publication-quality visualizations. Special focus is given on plot reusability, reproducibility, and real-time exploration and formatting options, operations rarely supported in similar visualization tools in a profound way. recoup was assessed using several qualitative user metrics and found to balance the tradeoff between important package features, including speed, visualization quality, overall friendliness, and the reusability of the results with minimal additional calculations. Conclusion While some existing solutions for the comprehensive visualization of NGS data signal offer satisfying results, they are often compromised regarding issues such as effortless tracking of processing and preparation steps under a common computational environment, visualization quality and user friendliness. recoup is a unique package presenting a balanced tradeoff for a combination of assessment criteria while remaining fast and friendly.


2011 ◽  
Vol 9 (6) ◽  
pp. 238-244 ◽  
Author(s):  
Tongwu Zhang ◽  
Yingfeng Luo ◽  
Kan Liu ◽  
Linlin Pan ◽  
Bing Zhang ◽  
...  

AIDS ◽  
2011 ◽  
Vol 25 (16) ◽  
pp. 2019-2026 ◽  
Author(s):  
Art F.Y. Poon ◽  
Rachel A. McGovern ◽  
Theresa Mo ◽  
David J.H.F. Knapp ◽  
Bluma Brenner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document