scholarly journals Expert–Novice Comparison Reveals Pedagogical Implications for Students’ Analysis of Primary Literature

2019 ◽  
Vol 18 (4) ◽  
pp. ar56 ◽  
Author(s):  
April A. Nelms ◽  
Miriam Segura-Totten

Student engagement in the analysis of primary scientific literature increases critical thinking, scientific literacy, data evaluation, and science process skills. However, little is known about the process by which expertise in reading scientific articles develops. For this reason, we decided to compare how faculty experts and student novices engage with a research article. We performed think-aloud interviews of biology faculty and undergraduates as they read through a scientific article. We analyzed these interviews using qualitative methods. We grounded data interpretation in cognitive load theory and the ICAP (interactive, constructive, active, and passive) framework. Our results revealed that faculty have more complex schemas than students and that they reduce cognitive load through two main mechanisms: summarizing and note-taking. Faculty also engage with articles at a higher cognitive level, described as constructive by the ICAP framework, when compared with students. More complex schemas, effectively lowering cognitive load, and deeper engagement with the text may help explain why faculty encounter fewer comprehension difficulties than students in our study. Finally, faculty analyze and evaluate data more often than students when reading the text. Findings include a discussion of successful pedagogical approaches for instructors wishing to enhance undergraduates’ comprehension and analysis of research articles.

Author(s):  
Anne-Marie Singh ◽  
Slava Kalyuga

With advancement in technology, hypermedia learning environments are becoming more common in education. Such environments present the multiple representations of information in a non-linear and non-sequential format, allowing the learners to enhance their retention and transfer of knowledge by selecting and sequencing their learning paths. Research into expert-novice differences has suggested that learner prior knowledge has major implications for learning. This chapter considers the role of learner prior knowledge in enhancing the effectiveness of hypermedia learning from a cognitive load perspective. Cognitive load theory is an instructional theory that investigates instructional means of managing limitations of human cognitive system, primarily processing limitations of working memory. The chapter reviews recent studies of cognitive load theory-generated techniques for learners with different levels of prior knowledge and relevant research in hypermedia learning. The chapter concludes with evidence-based recommendations for enhancing the effectiveness of educational hypermedia.


Author(s):  
Roland Brünken ◽  
Susan Steinbacher ◽  
Jan L. Plass ◽  
Detlev Leutner

Abstract. In two pilot experiments, a new approach for the direct assessment of cognitive load during multimedia learning was tested that uses dual-task methodology. Using this approach, we obtained the same pattern of cognitive load as predicted by cognitive load theory when applied to multimedia learning: The audiovisual presentation of text-based and picture-based learning materials induced less cognitive load than the visual-only presentation of the same material. The findings confirm the utility of dual-task methodology as a promising approach for the assessment of cognitive load induced by complex multimedia learning systems.


2013 ◽  
Author(s):  
Lori B. Stone ◽  
Abigail Lundquist ◽  
Stefan Ganchev ◽  
Nora Ladjahasan

Sign in / Sign up

Export Citation Format

Share Document