Cross‐hole magnetometric resistivity (MMR)

Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1313-1326 ◽  
Author(s):  
M. N. Nabighian ◽  
G. L. Oppliger ◽  
R. N. Edwards ◽  
B. B. H. Lo ◽  
S. J. Cheesman

The last decade has seen a growing acceptance of the magnetometric resistivity (MMR) method as a viable exploration technique in various geologic environments. Until recently, MMR exploration was carried out with both current electrodes and recording magnetometer located on the surface of the Earth. Significant improvements in anomaly amplitude can be achieved by lowering the recording magnetometer inside a drill hole. In contrast, the lowering of current electrodes beneath the surface does not always improve surface MMR responses. The advantages of locating the magnetic detector in a drill hole are illustrated numerically, anomaly calculations being carried out with a novel yet simple integral equation technique for a plate‐like body. The practicality of the cross‐hole MMR technique is demonstrated with a successful case history. Massive sulfide mineralization is mapped at a depth exceeding 500 m.

Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 70-77 ◽  
Author(s):  
B. B. Bhattacharya ◽  
Dinesh Gupta ◽  
Buddhadeb Banerjee ◽  
Shalivahan

A mise‐a‐la‐masse survey was carried out in Bhukia area, Banswara district, Rajasthan, India for auriferous sulfide occurrences. This area was originally surveyed for copper mineralization. Exploratory drilling, however, proved it to be economically not viable. The area was reopened for geophysical surveys when grab samples indicated the presence of gold. Initial geophysical surveys for copper mineralization showed electromagnetic, induced polarization, and resistivity anomalies. At first, one borehole was drilled for gold exploration on the basis of initial geophysical surveys. It encountered massive sulfide mineralization in association with gold. Borehole logging and a mise‐a‐la‐masse survey were carried out in this borehole. Three further boreholes drilled on the basis of the mise‐a‐la‐masse results encountered massive sulfide mineralization in association with gold. One of the three boreholes, 100 m from the first borehole along strike, was used for another set of mise‐a‐la‐masse measurements. A composite equipotential map was prepared using the results of mise‐a‐la‐masse results of both the boreholes. The equipotential contours show a north‐northwest‐south‐southeast trend of mineralization. The boreholes drilled on the basis of the mise‐a‐la‐masse results have delineated a strike length of more than 500 m of gold‐bearing sulfide mineralization. The sulfide content ranges from 10 to 40% and gold concentration ranges from 2 to 6 ppm. The dip and plunge of the lode, as anticipated from the mise‐a‐la‐masse results, are toward the west and north, respectively. Mise‐a‐la‐masse surveys are continuing in the adjoining areas.


Sign in / Sign up

Export Citation Format

Share Document