Transient response from a planar acoustic interface by a new point‐source decomposition into plane waves

Geophysics ◽  
1985 ◽  
Vol 50 (5) ◽  
pp. 766-774 ◽  
Author(s):  
Peter Hubral ◽  
Martin Tygel

For the wave field of a point source in full space there currently exist two classical decompositions into plane waves. The wave field can be decomposed into either (a) homogeneous and horizontally propagating (vertically attenuated) inhomogeneous plane waves by using the so‐called Sommerfeld‐Weyl integral, or (b) upgoing and downgoing homogeneous plane waves only using the Whittaker integral. Transient representations of both integrals exist. We propose a new decomposition integral that has a greater flexibility than both classical decompositions. Solutions for the point‐source reflection/transmission response from a planar interface, if based on the Sommerfeld‐Weyl integral, have for instance inherently an infinite integration limit. With the new formula, by which the wave field of a transient point source is decomposed into upgoing and downgoing homogeneous as well as horizontally propagating inhomogeneous transient plane waves, the point‐source response is directly obtained in the form of an integral with a finite integration limit. It can also be interpreted in terms of certain plane waves by which the point source is simulated in a new manner. For that matter, solutions based on the new integral readily reveal the “evanescent” or “nonray” character of the point source. The new formula may be considered an extension of the Sommerfeld‐Weyl or Whittaker integral. It can be used to compute reflection/transmission responses in a compact form in situations where the Sommerfeld‐Weyl integral was hitherto considered fundamental.


Geophysics ◽  
1984 ◽  
Vol 49 (9) ◽  
pp. 1495-1505 ◽  
Author(s):  
Martin Tygel ◽  
Peter Hubral

Point source responses from a planar acoustic and/or elastic layer boundary (as well as from a stack of planar parallel layers) are generally obtained by using as a starting point the Sommerfeld‐Weyl integral, which can be viewed as decomposing a time‐harmonic spherical source into time‐harmonic homogeneous and inhomogeneous plane waves. This paper gives a powerful extension of this integral by providing a direct decomposition of an arbitrary transient spherical source into homogeneous and inhomogeneous transient plane waves. To demonstrate with an example the usefulness of this new point source integral representation, a transient solution is formulated for the reflected/transmitted response from a planar acoustic reflector. The result is obtained in the form of a relatively simple integral and essentially corresponds to the solution obtained by Bortfeld (1962). It, however, is arrived at in a physically more transparent way by strictly superimposing the reflected/transmitted transient waves leaving the interface in response to the incident transient homogeneous and inhomogeneous plane waves coming from the center of the point source.



1997 ◽  
Vol 50 (4) ◽  
pp. 815
Author(s):  
W. N. Hugrass

A new derivation for the radiation reaction on a point charge is presented. The field of the charge is written as a superposition of plane waves. The plane wave spectrum of the field consists of homogeneous plane waves which propagate away from the charge at the speed of light, and inhomogeneous plane waves which constitute the Coulomb field of the point charge. The radiation field is finite at the orbit of the point charge. The force acting on the charge due to this field is the well known Abraham-Lorentz radiation reaction.





2016 ◽  
Vol 2 (2) ◽  
pp. 104-114
Author(s):  
Михаил Савин ◽  
Mihail Savin ◽  
Юрий Израильский ◽  
Yuriy Izrailsky

This paper considers anomalies in the magnetotelluric field in the Pc3 range of geomagnetic pulsations. We report experimental data on Pc3 field recordings which show negative (from Earth’s surface to air) energy fluxes Sz<0 and reflection coefficients |Q|>1. Using the model of inhomogeneous plane wave (Chetaev’s model), we try to analytically interpret anomalies of energy fluxes. We present two three-layer models with both electric and magnetic modes satisfying the condition |Qh|>1. Here we discuss a possibility of explaining observable effects by the resonance interaction between inhomogeneous plane waves and layered media.



Author(s):  
N. H. Scott

Inhomogeneous small-amplitude plane waves of (complex) frequency ω are propagated through a linear dissipative material which displays hereditary viscoelasticity. The energy density, energy flux and dissipation are quadratic in the small quantities, namely, the displacement gradient, velocity and velocity gradient, each harmonic with frequency ω , and so give rise to attenuated constant terms as well as to inhomogeneous plane waves of frequency 2 ω . The quadratic terms are usually removed by time averaging but we retain them here as they are of comparable magnitude with the time-averaged quantities of frequency ω . A new relationship is derived in hereditary viscoelasticity that connects the amplitudes of the terms of the energy density, energy flux and dissipation that have frequency 2 ω . It is shown that the complex group velocity is related to the amplitudes of the terms with frequency 2 ω rather than to the attenuated constant terms as it is for homogeneous waves in conservative materials.



Wave Motion ◽  
1991 ◽  
Vol 13 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Walter Lauriks ◽  
Jean F. Allard ◽  
Claude Depollier ◽  
André Cops




Solutions of Maxwell’s equations are considered for anisotropic media for which the electric permittivity κ and magnetic permeability µ are assumed to be arbitrary real positive definite symmetric second order tensors. The propagation of time-harmonic electromagnetic inhomogeneous plane waves or ‘propagating exponential solutions’ in such media has been presented previously. These solutions were systematically obtained by prescribing an ellipse - the directional ellipse associated with a bivector (complex vector) C - and finding the corresponding slowness bivectors. Here, it is shown that for some prescribed directional ellipses, not only propagating exponential solutions (PES), but also static exponential solutions (SES), may be obtained. There are a variety of possibilities. For example, for one choice of directional ellipse it is found that two SES and one PES are possible, whereas, for some other choices, only one SES or only one PES is possible. By a systematic use of bivectors and their associated ellipses, all the possible SES and PES are classified. To complete the classification it is necessary to examine special elliptical sections of the ellipsoids associated with the tensors κ , µ , κ -1 , µ -1 . In particular, sections by planes orthogonal to special directions called ‘generalized optic axes’ and ‘generalized ray axes’ play a major role. These axes reduce to the standard optic axes and ray axes in the special case of magnetically isotropic media.



Sign in / Sign up

Export Citation Format

Share Document