Gaussian beam migration

Geophysics ◽  
1990 ◽  
Vol 55 (11) ◽  
pp. 1416-1428 ◽  
Author(s):  
N. Ross Hill

Just as synthetic seismic data can be created by expressing the wave field radiating from a seismic source as a set of Gaussian beams, recorded data can be downward continued by expressing the recorded wave field as a set of Gaussian beams emerging at the earth’s surface. In both cases, the Gaussian beam description of the seismic‐wave propagation can be advantageous when there are lateral variations in the seismic velocities. Gaussian‐beam downward continuation enables wave‐equation calculation of seismic propagation, while it retains the interpretive raypath description of this propagation. This paper describes a zero‐offset depth migration method that employs Gaussian beam downward continuation of the recorded wave field. The Gaussian‐beam migration method has advantages for imaging complex structures. Like finite‐difference migration, it is especially compatible with lateral variations in velocity, but Gaussian beam migration can image steeply dipping reflectors and will not produce unwanted reflections from structure in the velocity model. Unlike other raypath methods, Gaussian beam migration has guaranteed regular behavior at caustics and shadows. In addition, the method determines the beam spacing that ensures efficient, accurate calculations. The images produced by Gaussian beam migration are usually stable with respect to changes in beam parameters.

2019 ◽  
Vol 160 ◽  
pp. 47-56
Author(s):  
Qingda Lv ◽  
Jianping Huang ◽  
Jidong Yang ◽  
Zhe Guan

Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. S11-S19
Author(s):  
Xingchen Shi ◽  
Weijian Mao ◽  
Xulei Li

Multimode and multicomponent elastic Gaussian-beam migration is attractive for its efficiency, flexibility, and accuracy. However, when it is used for ocean-bottom seismic data, the incomplete boundary condition will yield some nonphysical artifacts in the final migrated images. To solve this problem, we extend the elastic Gaussian-beam migration method from 3C to 4C by introducing the pressure recording to represent the stress tensor on the ocean bottom. Based on the elastic wave equation and the complete boundary condition for the ocean-bottom model, we derive effective formulas of accurate multimode wave downward continuation. With our method, different wave modes are separated and the receiver ghost is removed simultaneously by applying a decomposition matrix to 4C data during the migration without prior data separation and deghosting, which eliminates the artifacts better and reduces the processing cost. Three synthetic experiments were provided to validate the method for 4C ocean-bottom data migration.


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. S71-S77 ◽  
Author(s):  
Samuel H. Gray

Gaussian beam migration is a depth migration method whose accuracy rivals that of migration by wavefield extrapolation — so-called “wave-equation migration” — and whose efficiency rivals that of Kirchhoff migration. This migration method can image complicated geologic structures, including very steep dips, in areas where the seismic velocity varies rapidly. However, applications of prestack Gaussian beam migration either have been limited to common-offset common-azimuth data volumes, and thus are inflexible, or suffer from multiarrival inaccuracies in a common-shot implementation. In order to optimize both the flexibility and accuracy of Gaussian beam migration, I present a common-shot implementation that handles multipathing in a natural way. This allows the migration of data sets that can include a variety of azimuths, and it allows a simplified treatment of near-surface issues. Application of this method to model data typical of Canadian Foothills structures and to model data that includes a complicated salt body demonstrates the accuracy and versatility of the migration.


1997 ◽  
Vol 36 (4) ◽  
pp. 772 ◽  
Author(s):  
Zhiping Jiang ◽  
Qisheng Lu ◽  
Zejin Liu

Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
Filipe Borges ◽  
Martin Landrø

The use of permanent arrays for continuous reservoir monitoring has become a reality in the past decades, with Ekofisk and Valhall being its flagships. One of the possibilities when such solution is available is to passively record data while acquisitions with an active source are ongoing in nearby areas. These recordings might contain ultrafar-offset data (over 30 km), which are hardly used in standard reservoir exploration and monitoring, as they are mostly a combination of normal modes, deep reflections and diving waves. We present here data from the Valhall Life of Field Seismic array, recorded while an active seismic survey was being acquired in Ekofisk, in April 2014. Despite the lack of control on source firing time and position, analysis of the data shows that the normal modes are remarkably clear, overcoming the ambient noise in the field. The normal modes can be well explained by a two-layer acoustic model, while a combination of diving waves and refracted waves can be fairly well reproduced with a regional 1D velocity model. We suggest a method to use the far-offset recordings to monitor changes in the shallow sediments between source and receivers, both with and without a coherent seismic source in the area.


Sign in / Sign up

Export Citation Format

Share Document