rugged topography
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 30)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Andrés Lo Vecchio Repetto ◽  
Mario Candela ◽  
Daniel Falaschi ◽  
Federico Otero ◽  
María Alejandrina Videla ◽  
...  

Current climatic conditions in Central Andes (CA) (31-36 °S) have triggered the reduction of glacier area. Although CA are geographically circumscribed to an area under the same macroclimatic domain, their rugged topography creates several topoclimates as response to the effects of elevation, slope and aspect (morphometric factors). This study explores the impact of morphometric factors on the evolution of the glacial surface located above of Maipo volcano (34°09'50''S; 69°49'53''W). Through the use of 11 LANDSAT images (MSS, TM and OLI), the spatio-temporal evolution (period 1976-2020) of the glacier area was reconstructed. On this period, glacier area was reduced by 6 ± 0.5 km2 (-0.14 ± 0.01 km2a-1), equal to 63 % of 1976 glacial area (9.6 ± 0.5 km2). Fifty percent of the reduction occurred between 3,900 and 4,000 m elevation, with absolute losses towards lower elevations. In addition, it was detected that for every 100 m of ascent the relative area loss rate decreased 0.1 %a-1 (R2 = 0.81; p-value


Geology ◽  
2021 ◽  
Author(s):  
Gabriela Fernández-Viejo ◽  
Patricia Cadenas ◽  
Jorge Acevedo ◽  
Sergio Llana-Fúnez

Crustal roots are identified in collision chains worldwide. Frequently mirroring the summits of mountain systems, they elegantly encapsulate the concept of isostasy. The rugged topography of northern Iberia results from convergence with the European plate during the Alpine orogeny that formed the Pyrenean-Cantabrian mountain range. From east to west, the range comprises three distinct parts: the Pyrenees, the Basque Cantabrian region, and the Cantabrian Mountains. The identification of the Pyrenean root in the 1980s and the observation of a similar geometry beneath the Cantabrian range in the 1990s gave place to the current view of crustal thickening as a continuous feature, resulting from the northward subduction of Iberian crust. Recent developments in rift architecture have delivered a complex rifting template for the area prior to convergence, and contrasting views based on two-dimensional restorations have led to a debate over its evolution. A crucial geophysical constraint is Moho topography. Using two different data sets and techniques, we present the most accurate Moho surface to date, evidencing abrupt changes throughout the orogen. The complexity of hyperextended margins underlies the current Moho topography, and this is ultimately transferred to the nonuniform orogenic pattern found in northern Iberia.


Author(s):  
M. Buyukdemircioglu ◽  
S. Kocaman

Abstract. Spatiotemporal data visualization plays an important role for simulating the changes over time and representing dynamic geospatial phenomena. In aerial photogrammetry, image acquisition is the most important stage for obtaining high-quality products; and can be affected by various factors such as the weather and illumination conditions, imaging geometry, etc. 3D simulation of the aircraft trajectories at the planning stage helps the flight planners to make better decisions especially for unmanned aerial vehicle (UAV) missions in areas with mixed land use land cover, such as rugged topography, water bodies, restricted areas, etc.; since images with poor texture or large differences in scale may deteriorate the quality of the final products. In this study, a geovisualization approach for photogrammetric flights carried out with UAVs or airplane platforms was implemented using CesiumJS Virtual Globe. The measured flight trajectory parameters, such as image perspective centre coordinates and the camera rotations, the time of acquisition, and the interior orientation parameters (IOPs) of the camera were used for spatiotemporal visualization. In the developed approach, the EOPs and IOPs of the images were utilized to reconstruct the flight paths, the camera position, the footprints of the acquired images on the ground, and the rotation of the aircraft; and to present them on a 3D web environment precisely. The approach was demonstrated by using two case studies, one from a UAV flight mission and the other one from an airplane carried out with a large-format aerial camera.


2021 ◽  
Author(s):  
Anton Schenk ◽  
Beata Csatho ◽  
Thomas Neumann

This paper presents an assessment of the horizon-tal accuracy and precision of the laser altimetry observations collected by NASA's ICESat-2 mission. We selected the terrain-matching method to determine the position of laser altimeter profiles within a precisely knownn surface, represented by a DEM. We took this classical approach a step further, approx-imated the DEM by planar surfaces and calculated the optimal position of the laser profile by minimizing the square sum of the elevation differences between reference DEMs and ICESat-2 profiles. We found the highly accurate DEMs of the McMurdo Dry Valleys, Antarctica, ideal for this research because of their stable landscape and rugged topography. We computed the 3D shift parameters of 379 different laser altimeter profiles along two reference ground tracks collected within the first two years of the mission. Analyzing these results revealed a total geolocation error (mean + 1 sigma) of 4.93 m for release 3 and 4.66 m for release 4 data. These numbers are the averages of the six beams, expressed as mean + 1 sigma and lie well within the mission requirement of 6.5 m.


2021 ◽  
Author(s):  
Anton Schenk ◽  
Beata Csatho ◽  
Thomas Neumann

This paper presents an assessment of the horizon-tal accuracy and precision of the laser altimetry observations collected by NASA's ICESat-2 mission. We selected the terrain-matching method to determine the position of laser altimeter profiles within a precisely knownn surface, represented by a DEM. We took this classical approach a step further, approx-imated the DEM by planar surfaces and calculated the optimal position of the laser profile by minimizing the square sum of the elevation differences between reference DEMs and ICESat-2 profiles. We found the highly accurate DEMs of the McMurdo Dry Valleys, Antarctica, ideal for this research because of their stable landscape and rugged topography. We computed the 3D shift parameters of 379 different laser altimeter profiles along two reference ground tracks collected within the first two years of the mission. Analyzing these results revealed a total geolocation error (mean + 1 sigma) of 4.93 m for release 3 and 4.66 m for release 4 data. These numbers are the averages of the six beams, expressed as mean + 1 sigma and lie well within the mission requirement of 6.5 m.


Jalawaayu ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 61-71
Author(s):  
Yam Prasad Dhital ◽  
Binod Dawadi ◽  
Dambaru Ballab Kattel ◽  
Krishna Chandra Devkota

Runoff simulation is a complex problem in mountain catchments due to high rainfall variability and rugged topography. In the lower parts of Nepal, river flooding is a serious disaster problem in July and August; sometimes it also occurs in September. In this context, Hydro-Informatic Modeling System (HIMS) was used for daily and monthly runoff simulation from the set of daily hydro-meteorological data (Maximum and minimum temperature, rainfall, and discharge) in the time series 1980 to 1989, 1990 to 1999, and 2000 to 2009, respectively. The model performed well for the monthly runoff simulation, whereas the efficiency coefficient and relative coefficient both were found a very good correlation between observed and simulated hydrographs, which varied between 0.883 to 0.940 and 0.889 to 0.945, respectively. However, the efficiency coefficient and relative coefficient both were found a very poor correlation between observed and simulated hydrographs for the daily runoff simulation, which averaged 0.342 and 0.348, respectively. The daily simulation result also might have been improved, if more number of uniformly distributed meteorological station data is available.


Author(s):  
Etthel M Windels ◽  
Richard Fox ◽  
Krishna Yerramsetty ◽  
Katherine Krouse ◽  
Tom Wenseleers ◽  
...  

Abstract Bacterial persistence is a potential cause of antibiotic therapy failure. Antibiotic-tolerant persisters originate from phenotypic differentiation within a susceptible population, occurring with a frequency that can be altered by mutations. Recent studies have proven that persistence is a highly evolvable trait and, consequently, an important evolutionary strategy of bacterial populations to adapt to high-dose antibiotic therapy. Yet, the factors that govern the evolutionary dynamics of persistence are currently poorly understood. Theoretical studies predict far-reaching effects of bottlenecking on the evolutionary adaption of bacterial populations, but these effects have never been investigated in the context of persistence. Bottlenecking events are frequently encountered by infecting pathogens during host-to-host transmission and antibiotic treatment. In this study, we used a combination of experimental evolution and barcoded knockout libraries to examine how population bottlenecking affects the evolutionary dynamics of persistence. In accordance with existing hypotheses, small bottlenecks were found to restrict the adaptive potential of populations and result in more heterogeneous evolutionary outcomes. Evolutionary trajectories followed in small-bottlenecking regimes additionally suggest that the fitness landscape associated with persistence has a rugged topography, with distinct trajectories towards increased persistence that are accessible to evolving populations. Furthermore, sequencing data of evolved populations and knockout libraries after selection reveal various genes that are potentially involved in persistence, including previously known as well as novel targets. Together, our results do not only provide experimental evidence for evolutionary theories, but also contribute to a better understanding of the environmental and genetic factors that guide bacterial adaptation to antibiotic treatment.


2021 ◽  
Vol 18 (2) ◽  
pp. 291-303
Author(s):  
Changshan Han ◽  
Linong Liu ◽  
Zelin Liu ◽  
Zhengwei Li

Abstract We developed a modified topography prestack time migration (PSTM) scheme that can improve the imaging resolution by applying effective Q to topography migration. The computation of the traveltime at each imaging location in the migration is based on the floating datum smoothed by rugged topography. Unlike the common quality factor Q, the effective Q only determines the frequency-dependent amplitude and the traveltime at a single imaging location, which enables us to establish a Q model in an inhomogeneous medium. Hence, we can acquire the effective Q using a scanning technology according to the width of the frequency band and signal-to-noise ratio of the imaging gathers. The proposed migration method can be integrated into the conventional topography migration workflow. Synthetic and three-dimensional (3D) field datasets indicate that the proposed deabsorption PSTM from rugged topography is effective.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuanhang Huo ◽  
Wei Zhang ◽  
Jie Zhang

The MW 5.7 Changning earthquake occurred in southern Sichuan basin on 17 June 2019 and was the largest event ever recorded in this region. There are still some arguments existing about the causes of the earthquake and its possible links with water injections. Many studies on this earthquake have been performed, but the event depths obtained among them are significantly different and the source mechanisms also exhibit variations. In this study, we design an inversion scheme and use 3D Green’s functions considering the rugged topography of this region to determine the event location and moment tensor of the Changning earthquake based on waveform fittings. The 3D model can reduce the uncertainty due to the approximation of 1D model and better constrain the solutions. The latitude and the longitude of event location are 28.34°N and 104.82°E respectively and the depth is 3.14 km. The nodal plane solutions are strike 295°/dip 88°/rake 14° and strike 204°/dip 76°/rake 178°. The percentages of DC, CLVD and ISO components are 10, −83, and −7%, respectively. The good waveform fittings at 17 broadband stations indicate the reliability of the source mechanism in this study.


Sign in / Sign up

Export Citation Format

Share Document