Nonlinear inversion of seismic reflection data in a laterally invariant medium

Geophysics ◽  
1990 ◽  
Vol 55 (3) ◽  
pp. 284-292 ◽  
Author(s):  
A. Pica ◽  
J. P. Diet ◽  
A. Tarantola

Interpretation of seismic waveforms can be expressed as an optimization problem based on a non‐linear least‐squares criterion to find the model which best explains the data. An initial model is corrected iteratively using a gradient method (conjugate gradient). At each iteration, computation of the direction of the model perturbation requires the forward propagation of the actual sources and the reverse‐time propagation of the residuals (misfit between the data and the synthetics); the two wave fields thus obtained are then correlated. An extra forward propagation is required to compute the amplitude of the perturbation along the conjugate‐gradient direction. The number of propagations to be simulated numerically in each iteration equals three times the number of shots. Since a 2-D finite‐difference code is employed to solve forward‐ and backward‐propagation problems, the method is general and can handle arbitrary 2-D source‐receiver configurations and lateral heterogeneities. Using conventional velocity analysis to derive an initial velocity model, the method is implemented on a real marine data set. The data set which has been selected corresponds approximately to a horizontally stratified medium. Consequently, a single‐shot gather has been used for inversion. In spite of some simplifying assumptions used for wave‐field propagation (acoustic approximation, point source), and using synthetics generated by a nearby sonic log to calibrate amplitudes, our final synthetics match the input data very well and the inversion result has clear similarities to the log.

Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. Q15-Q26 ◽  
Author(s):  
Giovanni Angelo Meles ◽  
Kees Wapenaar ◽  
Andrew Curtis

State-of-the-art methods to image the earth’s subsurface using active-source seismic reflection data involve reverse time migration. This and other standard seismic processing methods such as velocity analysis provide best results only when all waves in the data set are primaries (waves reflected only once). A variety of methods are therefore deployed as processing to predict and remove multiples (waves reflected several times); however, accurate removal of those predicted multiples from the recorded data using adaptive subtraction techniques proves challenging, even in cases in which they can be predicted with reasonable accuracy. We present a new, alternative strategy to construct a parallel data set consisting only of primaries, which is calculated directly from recorded data. This obviates the need for multiple prediction and removal methods. Primaries are constructed by using convolutional interferometry to combine the first-arriving events of upgoing and direct-wave downgoing Green’s functions to virtual receivers in the subsurface. The required upgoing wavefields to virtual receivers are constructed by Marchenko redatuming. Crucially, this is possible without detailed models of the earth’s subsurface reflectivity structure: Similar to the most migration techniques, the method only requires surface reflection data and estimates of direct (nonreflected) arrivals between the virtual subsurface sources and the acquisition surface. We evaluate the method on a stratified synclinal model. It is shown to be particularly robust against errors in the reference velocity model used and to improve the migrated images substantially.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 577-590 ◽  
Author(s):  
Side Jin ◽  
Raul Madariaga

Seismic reflection data contain information on small‐scale impedance variations and a smooth reference velocity model. Given a reference velocity model, the reflectors can be obtained by linearized migration‐inversion. If the reference velocity is incorrect, the reflectors obtained by inverting different subsets of the data will be incoherent. We propose to use the coherency of these images to invert for the background velocity distribution. We have developed a two‐step iterative inversion method in which we separate the retrieval of small‐scale variations of the seismic velocity from the longer‐period reference velocity model. Given an initial background velocity model, we use a waveform misfit‐functional for the inversion of small‐scale velocity variations. For this linear step we use the linearized migration‐inversion method based on ray theory that we have recently developed with Lambaré and Virieux. The reference velocity model is then updated by a Monte Carlo inversion method. For the nonlinear inversion of the velocity background, we introduce an objective functional that measures the coherency of the short wavelength components obtained by inverting different common shot gathers at the same locations. The nonlinear functional is calculated directly in migrated data space to avoid expensive numerical forward modeling by finite differences or ray theory. Our method is somewhat similar to an iterative migration velocity analysis, but we do an automatic search for relatively large‐scale 1-D reference velocity models. We apply the nonlinear inversion method to a marine data set from the North Sea and also show that nonlinear inversion can be applied to realistic scale data sets to obtain a laterally heterogeneous velocity model with a reasonable amount of computer time.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. S165-S179 ◽  
Author(s):  
Jie Hou ◽  
William W. Symes

Least-squares migration (LSM) iteratively achieves a mean-square best fit to seismic reflection data, provided that a kinematically accurate velocity model is available. The subsurface offset extension adds extra degrees of freedom to the model, thereby allowing LSM to fit the data even in the event of significant velocity error. This type of extension also implies additional computational expense per iteration from crosscorrelating source and receiver wavefields over the subsurface offset, and therefore places a premium on rapid convergence. We have accelerated the convergence of extended least-squares migration by combining the conjugate gradient algorithm with weighted norms in range (data) and domain (model) spaces that render the extended Born modeling operator approximately unitary. We have developed numerical examples that demonstrate that the proposed algorithm dramatically reduces the number of iterations required to achieve a given level of fit or gradient reduction compared with conjugate gradient iteration with Euclidean (unweighted) norms.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB175-WB182 ◽  
Author(s):  
Yan Huang ◽  
Bing Bai ◽  
Haiyong Quan ◽  
Tony Huang ◽  
Sheng Xu ◽  
...  

The availability of wide-azimuth data and the use of reverse time migration (RTM) have dramatically increased the capabilities of imaging complex subsalt geology. With these improvements, the current obstacle for creating accurate subsalt images now lies in the velocity model. One of the challenges is to generate common image gathers that take full advantage of the additional information provided by wide-azimuth data and the additional accuracy provided by RTM for velocity model updating. A solution is to generate 3D angle domain common image gathers from RTM, which are indexed by subsurface reflection angle and subsurface azimuth angle. We apply these 3D angle gathers to subsalt tomography with the result that there were improvements in velocity updating with a wide-azimuth data set in the Gulf of Mexico.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB27-WB39 ◽  
Author(s):  
Zheng-Zheng Zhou ◽  
Michael Howard ◽  
Cheryl Mifflin

Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.


Solid Earth ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 543-554 ◽  
Author(s):  
I. Flecha ◽  
R. Carbonell ◽  
R. W. Hobbs

Abstract. The difficulties of seismic imaging beneath high velocity structures are widely recognised. In this setting, theoretical analysis of synthetic wide-angle seismic reflection data indicates that velocity models are not well constrained. A two-dimensional velocity model was built to simulate a simplified structural geometry given by a basaltic wedge placed within a sedimentary sequence. This model reproduces the geological setting in areas of special interest for the oil industry as the Faroe-Shetland Basin. A wide-angle synthetic dataset was calculated on this model using an elastic finite difference scheme. This dataset provided travel times for tomographic inversions. Results show that the original model can not be completely resolved without considering additional information. The resolution of nonlinear inversions lacks a functional mathematical relationship, therefore, statistical approaches are required. Stochastic tests based on Metropolis techniques support the need of additional information to properly resolve sub-basalt structures.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1395-1407 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

Shallow seismic reflection data were recorded along two long (>1.6 km) intersecting profiles in the glaciated Suhre Valley of northern Switzerland. Appropriate choice of source and receiver parameters resulted in a high‐fold (36–48) data set with common midpoints every 1.25 m. As for many shallow seismic reflection data sets, upper portions of the shot gathers were contaminated with high‐amplitude, source‐generated noise (e.g., direct, refracted, guided, surface, and airwaves). Spectral balancing was effective in significantly increasing the strength of the reflected signals relative to the source‐generated noise, and application of carefully selected top mutes ensured guided phases were not misprocessed and misinterpreted as reflections. Resultant processed sections were characterized by distributions of distinct seismic reflection patterns or facies that were bounded by quasi‐continuous reflection zones. The uppermost reflection zone at 20 to 50 ms (∼15 to ∼40 m depth) originated from a boundary between glaciolacustrine clays/silts and underlying glacial sands/gravels (till) deposits. Of particular importance was the discovery that the deepest part of the valley floor appeared on the seismic section at traveltimes >180 ms (∼200 m), approximately twice as deep as expected. Constrained by information from boreholes adjacent to the profiles, the various seismic units were interpreted in terms of unconsolidated glacial, glaciofluvial, and glaciolacustrine sediments deposited during two principal phases of glaciation (Riss at >100 000 and Würm at ∼18 000 years before present).


Author(s):  
A. Tarantola ◽  
M. Noble ◽  
C. Barnes ◽  
M. Charara ◽  
H. Igel ◽  
...  

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. A25-A29
Author(s):  
Lele Zhang

Migration of seismic reflection data leads to artifacts due to the presence of internal multiple reflections. Recent developments have shown that these artifacts can be avoided using Marchenko redatuming or Marchenko multiple elimination. These are powerful concepts, but their implementation comes at a considerable computational cost. We have derived a scheme to image the subsurface of the medium with significantly reduced computational cost and artifacts. This scheme is based on the projected Marchenko equations. The measured reflection response is required as input, and a data set with primary reflections and nonphysical primary reflections is created. Original and retrieved data sets are migrated, and the migration images are multiplied with each other, after which the square root is taken to give the artifact-reduced image. We showed the underlying theory and introduced the effectiveness of this scheme with a 2D numerical example.


Geophysics ◽  
1998 ◽  
Vol 63 (3) ◽  
pp. 1062-1065 ◽  
Author(s):  
Thomas Gruber ◽  
Stewart A. Greenhalgh

Rectangular grid velocity models and their derivatives are widely used in geophysical inversion techniques. Specifically, seismic tomographic reconstruction techniques, whether they be based on raypath methods (Bregman et al., 1989; Moser, 1991; Schneider et al., 1992; Cao and Greenhalgh, 1993; Zhou, 1993) or full wave equation methods (Vidale, 1990; Qin and Schuster, 1993; Cao and Greenhalgh, 1994) for calculating synthetic arrival times, involve propagation through a grid model. Likewise, migration of seismic reflection data, using asymptotic ray theory or finite difference/pseudospectral methods (Stolt and Benson, 1986; Zhe and Greenhalgh, 1997) involve assigning traveltimes to upward and downward propagating waves at every grid point in the model. The traveltimes in both cases depend on the grid specification. However, the precision level of such numerical models and their dependence on the model parameters is often unknown. In this paper, we describe a two‐dimensional velocity model and derive an error bound for first‐break times calculated with such a model. The analysis provides clear guidelines for grid specifications.


Sign in / Sign up

Export Citation Format

Share Document