An inverse‐scattering series method for attenuating multiples in seismic reflection data

Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1975-1989 ◽  
Author(s):  
Arthur B. Weglein ◽  
Fernanda Araújo Gasparotto ◽  
Paulo M. Carvalho ◽  
Robert H. Stolt

We present a multidimensional multiple‐attenuation method that does not require any subsurface information for either surface or internal multiples. To derive these algorithms, we start with a scattering theory description of seismic data. We then introduce and develop several new theoretical concepts concerning the fundamental nature of and the relationship between forward and inverse scattering. These include (1) the idea that the inversion process can be viewed as a series of steps, each with a specific task; (2) the realization that the inverse‐scattering series provides an opportunity for separating out subseries with specific and useful tasks; (3) the recognition that these task‐specific subseries can have different (and more favorable) data requirements, convergence, and stability conditions than does the original complete inverse series; and, most importantly, (4) the development of the first method for physically interpreting the contribution that individual terms (and pieces of terms) in the inverse series make toward these tasks in the inversion process, which realizes the selection of task‐specific subseries. To date, two task‐specific subseries have been identified: a series for eliminating free‐surface multiples and a series for attenuating internal multiples. These series result in distinct algorithms for free‐surface and internal multiples, and neither requires a model of the subsurface reflectors that generate the multiples. The method attenuates multiples while preserving primaries at all offsets; hence, these methods are equally well suited for subsequent poststack structural mapping or prestack amplitude analysis. The method has demonstrated its usefulness and added value for free‐surface multiples when (1) the overburden has significant lateral variation, (2) reflectors are curved or dipping, (3) events are interfering, (4) multiples are difficult to identify, and (5) the geology is complex. The internal‐multiple algorithm has been tested with good results on band‐limited synthetic data; field data tests are planned. This procedure provides an approach for attenuating a significant class of heretofore inaccessible and troublesome multiples. There has been a recent rejuvenation of interest in multiple attenuation technology resulting from current exploration challenges, e.g., in deep water with a variable water bottom or in subsalt plays. These cases are representative of circumstances where 1-D assumptions are often violated and reliable detailed subsurface information is not available typically. The inverse scattering multiple attenuation methods are specifically designed to address these challenging problems. To date it is the only multidimensional multiple attenuation method that does not require 1-D assumptions, moveout differences, or ocean‐bottom or other subsurface velocity or structural information for either free‐surface or internal multiples. These algorithms require knowledge of the source signature and near‐source traces. We describe several current approaches, e.g., energy minimization and trace extrapolation, for satisfying these prerequisites in a stable and reliable manner.

Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1293-1303 ◽  
Author(s):  
Luc T. Ikelle ◽  
Lasse Amundsen ◽  
Seung Yoo

The inverse scattering multiple attenuation (ISMA) algorithm for ocean‐bottom seismic (OBS) data can be formulated in the form of a series expansion for each of the four components of OBS data. Besides the actual data, which constitute the first term of the series, each of the other terms is computed as a multidimensional convolution of OBS data with streamer data, and aims at removing one specific order of multiples. If the streamer data do not contain free‐surface multiples, we found that the computation of only the second term of the series is needed to predict and remove all orders of multiples, whatever the water depth. As the computation of the various terms of the series is the most expensive part of ISMA, this result can produce significant savings in computation time, even in data storage, as we no longer need to store the various terms of the series. For example, if the streamer data contained free‐surface multiples, OBS seismic data of 6‐s duration, corresponding to a geological model of the subsurface with 250‐m water depth, require the computation of five terms of the series for each of the four components of OBS data. With the new implementation, in which the streamer data do not contain free‐surface multiples, we need the computation of only one term of the series for each component of the OBS data. The saving in CPU time for this particular case is at least fourfold. The estimation of the inverse source signature, which is an essential part of ISMA, also benefits from the reduction of the number of terms needed for the demultiple to two because it becomes a linear inverse problem instead of a nonlinear one. Assuming that the removal of multiple events produces a significant reduction in the energy of the data, the optimization of this problem leads to a stable, noniterative analytic solution. We have also adapted these results to the implementation of ISMA for vertical‐cable (VC) data. This implementation is similar to that for OBS data. The key difference is that the basic model in VC imaging assumes that data consist of receiver ghosts of primaries instead of the primaries themselves. We have used the following property to achieve this goal. The combination of VC data with surface seismic data, which do not contain free‐surface multiples, allows us to predict free‐surface multiples and receiver ghosts as well as the receiver ghosts of primary reflections. However, if the direct wave arrivals are removed from the VC data, this combination will not predict the receiver ghosts of primary reflections. The difference between these two predictions produces data containing only receiver ghosts of primaries.


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 953-963 ◽  
Author(s):  
Luc T. Ikelle

Marine vertical cable (VC) data contain primaries, receiver ghosts, free‐surface multiples, and internal multiples just like towed‐streamer data. However, the imaging of towed‐streamer data is based on primary reflections, while the emerging imaging algorithms of VC data tend to use the receiver ghosts of primary reflections instead of the primaries themselves. I present an algorithm for attenuating primaries, free‐surface multiples, and the receiver ghosts of free‐surface multiples while preserving the receiver ghosts of primaries. My multiple attenuation algorithm of VC data is based on an inverse scattering approach known, which is a predict‐then‐subtract method. It assumes that surface seismic data are available or that they can be computed from VC data after an up/down wavefield separation at the receiver locations (streamer data add to VC data some of the wave paths needed for multiple attenuation). The combination of surface seismic data with VC data allows one to predict free‐surface multiples and receiver ghosts as well as the receiver ghosts of primary reflections. However, if the direct wave arrivals are removed from the VC data, this combination will not predict the receiver ghosts of primary reflections. I use this property to attenuate primaries, free‐surface multiples, and receiver ghosts from VC data, preserving only the receiver ghosts of primaries. This method can be used for multicomponent ocean bottom cable data (i.e., arrays of sea‐floor geophones and hydrophones) without any modification to attenuate primaries, free‐surface multiples, and the receiver ghosts of free‐surface multiples while preserving the receiver ghosts of primaries.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. Q27-Q40 ◽  
Author(s):  
Katrin Löer ◽  
Andrew Curtis ◽  
Giovanni Angelo Meles

We have evaluated an explicit relationship between the representations of internal multiples by source-receiver interferometry and an inverse-scattering series. This provides a new insight into the interaction of different terms in each of these internal multiple prediction equations and explains why amplitudes of estimated multiples are typically incorrect. A downside of the existing representations is that their computational cost is extremely high, which can be a precluding factor especially in 3D applications. Using our insight from source-receiver interferometry, we have developed an alternative, computationally more efficient way to predict internal multiples. The new formula is based on crosscorrelation and convolution: two operations that are computationally cheap and routinely used in interferometric methods. We have compared the results of the standard and the alternative formulas qualitatively in terms of the constructed wavefields and quantitatively in terms of the computational cost using examples from a synthetic data set.


Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. A13-A28 ◽  
Author(s):  
Luc T. Ikelle

Three-dimensional formulations of free-surface multiple attenuation for multioffset seismic data are well known. They are not yet used in practice because they require very dense source-receiver coverage, which is still out of reach with existing seismic-acquisition systems. The development of alternative solutions based on 2D algorithms depends on our understanding of the relationship between 2D and 3D free-surface multiple-attenuation methods. This paper attempts to enhance this understanding by establishing the relationship between 2D and 3D inverse scattering free-surface multiple attenuation. A 3D model consisting of three scattering points (one scattered point located in the vertical plane containing the shooting line and the other two points outside this plane) in a homogeneous medium (for which the exact pressure field is analytically known) is used to show that the 2D inverse scattering multiple-attenuation algorithm predicts all free-surface multiples as does its 3D counterpart but with some traveltime and amplitude errors. One implication of this result is that the current 2D inverse scattering multiple-attenuation algorithm, with an appropriate 2D-to-3D correction, can be used to predict the free-surface multiples for data containing out-of-plane scattering.


Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. SI71-SI78 ◽  
Author(s):  
Chengliang Fan ◽  
Gary L. Pavlis ◽  
Arthur B. Weglein ◽  
Bogdan G. Nita

We develop a new way to remove free-surface multiples from teleseismic P- transmission and constructed reflection responses. We consider two types of teleseismic waves with the presence of the free surface: One is the recorded waves under the real transmission geometry; the other is the constructed waves under a virtual reflection geometry. The theory presented is limited to 1D plane wave acoustic media, but this approximation is reasonable for the teleseismic P-wave problem resulting from the steep emergence angle of the wavefield. Using one-way wavefield reciprocity, we show how the teleseismic reflection responses can be reconstructed from the teleseismic transmission responses. We use the inverse scattering series to remove free-surface multiples from the original transmission data and from the reconstructed reflection response. We derive an alternative algorithm for reconstructing the reflection response from the transmission data that is obtained by taking the difference between the teleseismic transmission waves before and after free-surface multiple removal. Numerical tests with 1D acoustic layered earth models demonstrate the validity of the theory we develop. Noise test shows that the algorithm can work with S/N ratio as low as 5 compared to actual data with S/N ratio from 30 to 50. Testing with elastic synthetic data indicates that the acoustic algorithm is still effective for small incidence angles of typical teleseismic wavefields.


2014 ◽  
Author(s):  
Frederico Xavier de Melo* ◽  
Murad Idris ◽  
Zhiming James Wu ◽  
Clement Kostov

Geophysics ◽  
2021 ◽  
pp. 1-94
Author(s):  
Ole Edvard Aaker ◽  
Adriana Citlali Ramírez ◽  
Emin Sadikhov

The presence of internal multiples in seismic data can lead to artefacts in subsurface images ob-tained by conventional migration algorithms. This problem can be ameliorated by removing themultiples prior to migration, if they can be reliably estimated. Recent developments have renewedinterest in the plane wave domain formulations of the inverse scattering series (ISS) internal multipleprediction algorithms. We build on this by considering sparsity promoting plane wave transformsto minimize artefacts and in general improve the prediction output. Furthermore, we argue forthe usage of demigration procedures to enable multidimensional internal multiple prediction withmigrated images, which also facilitate compliance with the strict data completeness requirementsof the ISS algorithm. We believe that a combination of these two techniques, sparsity promotingtransforms and demigration, pave the way for a wider application to new and legacy datasets.


Sign in / Sign up

Export Citation Format

Share Document