direct wave
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 38)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Georg Sebastian Voelker ◽  
Gergely Bölöni ◽  
Young-Ha Kim ◽  
Ulrich Achatz

<p>Subgrid-scale internal gravity waves (IGWs) are important distributors of energy in a stratified atmosphere. While they are mostly excited at lower altitudes their effects are most important between the upper troposphere to the mesopause (~85km). During propagation–both in the vertical and the horizontal–nonlinear IGWs can exert a wave drag on the mean winds, interact with the mean potential temperature, and mix atmospheric tracers such as aerosols or greenhouse gases.</p> <p>In state-of-the art weather prediction models IGWs are typically parametrized using the single-column and the steady-state assumptions. These parametrizations take into account dissipative effects of IGWs but neglect their horizontal propagation and all of their transient interaction mechanisms such as direct wave-mean-flow interactions. However, the latter have been shown to contribute to IGW dynamics in various idealized studies.</p> <p>Here we present advances of the use of the transient Multi Scale Gravity Wave Model (MS-GWaM) in the upper atmosphere model UA-ICON. Based on Lagrangian ray-tracing the parametrization includes various non-orographic wave sources, transient propagation in both the horizontal and vertical directions, direct wave-mean-flow interactions and wave breaking. The resulting setup satisfactorily reproduces the observed mean-wind and potential temperature climatology and already shows promising insights into the details of the role of IGWs in the atmosphere.</p>


Author(s):  
Евгений Валерьевич Мурашкин ◽  
Юрий Николаевич Радаев

В статье обсуждаются вопросы распространения монохроматических волн в гемитропном микрополярном континууме. Сформулированы уравнения динамики гемитропного микрополярного упругого тела в терминах псевдотензоров с 9-ю определяющими псевдоскалярами. Рассмотрены преобразования указанных уравнений в случаях инверсии пространства и зеркального отражения относительно заданной плоскости. Показано наличие инверсных волновых мод (наряду с прямыми) в распространяющейся плоской волне. Получены формулы преобразования прямых волновых мод перемещений и микровращений в инверсные и зеркально отраженные моды. Приводятся соответствующие формулы. The paper deals with the propagation of monochromatic plane waves in a hemitropic micropolar continuum. The dynamics equations of a hemitropic micropolar elastic solid in terms of pseudotensors with 9 constitutive pseudoscalars are derived and discussed. Formulae for the cases of space inversion and mirror reflection relative to a given plane are obtained and considered. The simultaneous existence of the direct, inverse and mirror reflected wave modes in propagating plane waves is established. Formulae for direct wave modes of displacements and microrotations in inverse and mirror modes are given.


Geophysics ◽  
2021 ◽  
pp. 1-17
Author(s):  
Roman Pevzner ◽  
Stanislav Glubokovskikh ◽  
Roman Isaenkov ◽  
Pavel Shashkin ◽  
Konstantin Tertyshnikov ◽  
...  

Instrumenting wells with distributed acoustic sensors (DAS) and illuminating them with passive or active seismic sources allows precise tracking of temporal variations of direct-wave traveltimes and amplitudes, which can be used to monitor variations in formation stiffness and density. This approach has been tested by tracking direct-wave amplitudes and traveltimes as part of a CCS project where a 15 kt supercritical CO2 injection was monitored with continuous offset VSPs using nine permanently mounted surface orbital vibrators (SOVs) acting as seismic sources and several wells instrumented with DAS cables cemented behind the casing. The results show a significant (from 15 to 30%) increase of strain amplitudes within the CO2 injection interval, and travetime shifts of 0.3 to 0.4 ms below this interval, consistent with full-wave 1.5D numerical simulations and theoretical predictions. The results give independent estimates of the CO2 plume thickness and P-wave velocity reduction within it.


2021 ◽  
Vol 13 (15) ◽  
pp. 3041
Author(s):  
Zhanze Wang ◽  
Feifeng Liu ◽  
Tao Zeng ◽  
Chenghao Wang

Global navigation satellite system (GNSS)-based synthetic aperture radar interferometry (InSAR) employs GNSS satellites as transmitters of opportunity and a fixed receiver with two channels, i.e., direct wave and echo, on the ground. The repeat-pass concept is adopted in GNSS-based InSAR to retrieve the deformation of the target area, and it has inherited advantages from the GNSS system, such as a short repeat-pass period and multi-angle retrieval. However, several interferometric phase errors, such as inter-channel and atmospheric errors, are introduced into GNSS-based InSAR, which seriously decreases the accuracy of the retrieved deformation. In this paper, a deformation retrieval algorithm is presented to assess the compensation of the interferometric phase errors in GNSS-based InSAR. Firstly, the topological phase error was eliminated based on accurate digital elevation model (DEM) information from a light detection and ranging (lidar) system. Secondly, the inter-channel phase error was compensated, using direct wave in the echo channel, i.e., a back lobe signal. Finally, by modeling the atmospheric phase, the residual atmospheric phase error was compensated for. This is the first realization of the deformation detection of urban scenes using a GNSS-based system, and the results suggest the effectiveness of the phase error compensation algorithm.


2021 ◽  
Vol 18 (4) ◽  
pp. 492-502
Author(s):  
Dongliang Zhang ◽  
Constantinos Tsingas ◽  
Ahmed A Ghamdi ◽  
Mingzhong Huang ◽  
Woodon Jeong ◽  
...  

Abstract In the last decade, a significant shift in the marine seismic acquisition business has been made where ocean bottom nodes gained a substantial market share from streamer cable configurations. Ocean bottom node acquisition (OBN) can acquire wide azimuth seismic data over geographical areas with challenging deep and shallow bathymetries and complex subsurface regimes. When the water bottom is rugose and has significant elevation differences, OBN data processing faces a number of challenges, such as denoising of the vertical geophone, accurate wavefield separation, redatuming the sparse receiver nodes from ocean bottom to sea level and multiple attenuation. In this work, we review a number of challenges using real OBN data illustrations. We demonstrate corresponding solutions using processing workflows comprising denoising the vertical geophones by using all four recorded nodal components, cross-ghosting the data or using direct wave to design calibration filters for up- and down-going wavefield separation, performing one-dimensional reversible redatuming for stacking QC and multiple prediction, and designing cascaded model and data-driven multiple elimination applications. The optimum combination of the mentioned technologies produced cleaner and high-resolution migration images mitigating the risk of false interpretations.


2021 ◽  
Author(s):  
Donghu Nie ◽  
Xin Su ◽  
Dongqi Li ◽  
Yongce Wang ◽  
Zenghui Zhang ◽  
...  

2021 ◽  
Vol 39 ◽  
pp. 102657
Author(s):  
Guoqi Zhao ◽  
Yu Liu ◽  
Gang Liu ◽  
Shiping Jiang ◽  
Wenfeng Hao

2021 ◽  
Author(s):  
Joannes Gullaksen

Abstract The scope of this paper is to provide a method implemented in an application for assessment of dynamic response of free spanning pipelines subjected to combined wave and current loading. The premises for the paper are based on application development within pipeline free span evaluation in a software development project. A brief introduction is provided to the basic hydrodynamic phenomena, principles and parameters for dynamic response of pipeline free spans. The choice of method for static and dynamic span modelling has an influence on calculated modal frequencies and associated stresses. Due to the importance of frequencies and stresses for fatigue and environmental loading calculations, the choice of analysis approach influences the partial safety factor format. The aim of the structural analysis is to provide the necessary input to the calculations of VIV and force model response, and to provide realistic estimations of static loading from functional loads. Environmental flow conditions are implemented in the application, such as steady flow due to current, oscillatory flow due to waves and combined flow due to current and waves. Combined wave and current loading include the long-term current velocity distribution, short-term and long-term description of wave-induced flow velocity amplitude and period of oscillating flow at the pipe level and return period values. Inline and cross-flow vibrations are considered in separate response models. For pipelines and risers, modes are categorized in in-line or cross-flow direction. A force model is also considered for the short-term fatigue damage due to combined current and direct wave actions. Design criteria can be specified for ultimate limit state (ULS) and fatigue limit state (FLS) due to in-line and cross-flow vortex induced vibrations (VIV) and direct wave loading.


2021 ◽  
Author(s):  
Zhaocheng Lu ◽  
Andrew Norris

Abstract A passive method of realizing nonreciprocal wave propagation in a two-dimensional (2D) lattice is proposed, using bilinear springs combined with the necessary spatial asymmetry to provide a stable and strong departure from reciprocity. The bilinear property is unique among nonlinear mechanisms in that it is independent of amplitude but sensitive to the sign of the wave motion; the 2D setup allows the flexibility of generating spatial asymmetry at both small and large scales. The starting point is a linear 2D monatomic spring-mass lattice with strong directionally dependent wave propagation. The source and receiver are aligned so that there is virtually no direct wave transmission between them. Adding a region of bilinearity combined with spatial asymmetry that is not in the direct path between the source and receiver causes signal transmission via nonreciprocal scattering. A variety of spatially asymmetric bilinear configurations are considered, ranging from compact modulations confined within the unit cell to extended ones over the whole section, to obtain different dynamic nonreciprocal effects. Simulations illustrate how the combination of bilinearity and spatial asymmetry ensures a passive amplitude-independent nonreciprocal 2D system for a variety of different excitations.


Geophysics ◽  
2021 ◽  
pp. 1-145
Author(s):  
Zhiming Ren ◽  
Qianzong Bao ◽  
Bingluo Gu

Full waveform inversion (FWI) suffers from the local minima problem and requires a sufficiently accurate starting model to converge to the correct solution. Wave-equation traveltime inversion (WETI) is an effective tool to retrieve the long-wavelength components of the velocity model. We develop a joint diving/direct and reflected wave WETI (JDRWETI) method to build the P- and S-wave velocity macromodels. We estimate the traveltime shifts of seismic events (diving/direct waves, PP and PS reflections) through the dynamic warping scheme and construct a misfit function using both the time shifts of diving/direct and reflected waves. We derive the adjoint wave equations and the gradients with respect to the background models based on the joint misfit function. We apply the kernel decomposition scheme to extract the kernel of the diving/direct wave and the tomography kernels of PP and PS reflections. For an explosive source, the kernels of diving/direct wave and PP reflections and the kernel of PS reflections are used to compute the P- and S-wave gradients of the background models, respectively. We implement JDRWETI by a two-stage inversion workflow: first invert the P- and S-wave velocity models using the P-wave gradients and then improve the S-wave velocity model using the S-wave gradients. Numerical tests on synthetic and field datasets reveal that the JDRWETI method successfully recovers the long-wavelength components of P- and S-wave velocity models, which can be used for an initial model for the subsequent elastic FWI. Moreover, the proposed JDRWETI method prevails over the existing reflection WETI method and the cascaded diving/direct and reflected wave WETI method, especially when large velocity errors are present in the shallow part of the starting models. The JDRWETI method with the two-stage inversion workflow can give rise to reasonable inversion results even for the model with different P- and S-wave velocity structures.


Sign in / Sign up

Export Citation Format

Share Document