Time‐lapse shear‐wave splitting: Monitoring hydraulic fracturing of a tight‐gas reservoir

2007 ◽  
Author(s):  
Matthew S. Casey ◽  
Tom L. Davis
2012 ◽  
Author(s):  
Satya V. Perumalla ◽  
Antonio Santagati ◽  
Michael Tony Addis ◽  
Sultan Hamed Al-Mahruqy ◽  
Joe Curtino ◽  
...  

2010 ◽  
Author(s):  
M. Nizamuddin ◽  
Tanweer Aizad ◽  
G.R. Andress ◽  
Marko Korosa

2013 ◽  
Vol 32 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Jeff P. Grossman ◽  
Gulia Popov ◽  
Chris Steinhoff

Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. MA1-MA7 ◽  
Author(s):  
James P. Verdon ◽  
J.-Michael Kendall ◽  
Shawn C. Maxwell

Hydraulic fracturing is used to create pathways for fluid migration and to stimulate production. Usually, water is the injected fluid, although alternative fluids such as carbon dioxide [Formula: see text] have been used recently. The amount of fracturing that [Formula: see text] can induce is also of interest for the security of carbon capture and storage. Hydraulic fracturing is usually monitored using passive seismic arrays, detecting microseismic events generated by the fracturing. It is of interest to compare the amount of seismicity that [Formula: see text] injection can generate in comparison with water. With this in mind, we have analyzed a passive seismic data set monitoring the injection of water and supercritical [Formula: see text] under very similar conditions, allowing us to make a direct comparison be-tween the fluids. We examined event locations and event magnitudes, and we used shear-wave splitting to image the fractures that are generated. For both fluids,the event locations map the formation of fractures moving away from the injection well with normals parallel to the minimum principal stress. The events during water injection are limited to the injection depth, while during [Formula: see text] injection, activity migrates above the injection depth. Event magnitudes are similar in both cases, and larger event magnitudes appear to correlate with higher injection pressures. Shear-wave splitting suggests that water injection generates more fractures, though the data quality is not good enough to make a robust conclusion about this. The comparability between water and [Formula: see text] injection means that lessons can be learned from the abundant experience of conventional water injection.


2015 ◽  
Author(s):  
Jian Zhou ◽  
Yijin Zeng ◽  
Tingxue Jiang ◽  
Baoping Zhang ◽  
Xudong Zhang

Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC157-WC166 ◽  
Author(s):  
Andreas Wuestefeld ◽  
James P. Verdon ◽  
J-Michael Kendall ◽  
James Rutledge ◽  
Huw Clarke ◽  
...  

We have analyzed seismic anisotropy using shear-wave-splitting measurements made on microseismic events recorded during a hydraulic fracture experiment in a tight gas reservoir in Carthage, east Texas. Microseismic events were recorded on two downhole arrays of three-component sensors, the geometry of which provided good ray coverage for anisotropy analysis. A total of 16,633 seismograms from 888 located events yielded 1545 well-constrained shear-wave-splitting measurements. Manual analysis of splitting from a subset of this data set reveals temporal changes in splitting during fracturing. Inversion using the full data set allows the identification of fracture strike and density, which is observed to vary during fracturing. The recovered fracture strike in the rock mass is parallel to directions of regional borehole breakout, but oblique to the hydraulic fracture corridor as mapped by the microseismic event. We relate this to en-echelon fracturing of preexisting cracks. The magnitude of shear-wave splitting shows a clear temporal increase during each pumping stage, indicating the generation of cracks and fissures in a halo around the fracture corridor, which thus increase the overall permeability of the rock mass. Our results show that shear-wave-splitting analysis can provide a useful tool for monitoring spatial and temporal variations in fracture networks generated by hydraulic stimulation.


2009 ◽  
Author(s):  
Paritosh Singh ◽  
Paul Williamson ◽  
Ehsan Sadeghi ◽  
Jean‐Luc Boelle

Sign in / Sign up

Export Citation Format

Share Document