Understanding seismic wave attenuation mechanisms in porous and non-porous media: Some new insights

SEG Lectures ◽  
2021 ◽  
Author(s):  
Nimisha Vedanti
Author(s):  
Q. LI ◽  
F. SANTOSA ◽  
B. WHEELOCK ◽  
K. GOVIL

Poroelastic effects have been of great interest in the seismic literature as they have been identified as a major cause of wave attenuation in heterogeneous porous media. The observed attenuation in the seismic wave can be explained in part by energy loss to fluid motion in the pores. On the other hand, it is known that the attenuation is particularly pronounced in stratified structures where the scale of spatial heterogeneity is much smaller than the seismic wavelength. Understanding of poroelastic effects on seismic wave attenuation in heterogeneous porous media has largely relied on numerical experiments. In this work, we present a homogenisation technique to obtain an upscaled viscoelastic model that captures seismic wave attenuation when the sub-seismic scale heterogeneity is periodic. The upscaled viscoelastic model directly relates seismic wave attenuation to the material properties of the heterogeneous structure. We verify our upscaled viscoelastic model against a full poroelastic model in numerical experiments. Our homogenisation technique suggests a new approach for solving coupled equations of motion.


2018 ◽  
Vol 67 (4) ◽  
pp. 956-968 ◽  
Author(s):  
Samuel Chapman ◽  
Jan V. M. Borgomano ◽  
Hanjun Yin ◽  
Jerome Fortin ◽  
Beatriz Quintal

2017 ◽  
Vol 35 (3) ◽  
Author(s):  
Julián David Peláez ◽  
Luis Alfredo Montes

ABSTRACT. Seismic wave attenuation (Q−1) values indicate relevant media properties, such as fluid content and porosity. Q−1 estimates, obtained using both VSP and conventional well log data, did not exhibit comparable trends, nor values. Whereas VSP results represent total attenuation, well log Q−1, which, theoretically, should represent scattering losses, displayed a low percentage correlation with transmission coefficients and other well logs. The influence of processing routines, chosen methodology and input parameters on Q−1-values suggests that ASR (Amplitude Spectral Ratio) and CFS (Centroid Frequency Shift) attenuation estimates should be regarded, in practical terms, as relative quantities instead of absolute ones. Seemingly incoherent negative values are frequent, nonetheless these could hold a physical meaning related to elastic amplification at interfaces. Considering that quality factor (Q) values obtained were more unstable than Q−1-values, it is advisable to report the latter. Keywords: Vertical Seismic Profiles, well logs, transmission coefficients, scattering, amplification.RESUMO. Os valores de atenuação da onda sísmica (Q−1) indicam propriedades relavantes dos meios, tais como conteúdo de fluido e porosidade. As estimativas do Q−1, obtidas usando dados de VSP e dados de poços convencionais, não apresentaram tendências nem valores comparáveis. Enquanto os resultados de VSP representamatenuação total, os resultados dos dados de poços, que teoricamente deveriam representar perdas de dispersão, apresentaramuma baixa correlação percentual com os coeficientes de transmissão e outros dados de poços. A influência das rotinas de processamento, da metodologia escolhida e dos parâmetros de entrada nos valores Q−1 sugere que as estimativas de atenuação ASR (Amplitude Spectral Ratio) e CFS (Centroid Frequency Shift) devem ser, em termos práticos, consideradas como quantidades relativas em vez de absolutas. Valores negativos aparentemente incoerentes são frequentes, no entanto estes poderiam conter um significado físico relacionado `a amplificação elástica nas interfaces. Considerando que os valores do fator de qualidade (Q) obtidos foram mais instáveis do que os valores de Q−1, é aconselhável documentar o último. Palavras-chave: Perfis Sísmicos Verticais, registros de poços, coeficientes de transmissão, dispersão, amplificação.


2021 ◽  
Author(s):  
Samuel Chapman ◽  
Jan V. M. Borgomano ◽  
Beatriz Quintal ◽  
Sally M. Benson ◽  
Jerome Fortin

<p>Monitoring of the subsurface with seismic methods can be improved by better understanding the attenuation of seismic waves due to fluid pressure diffusion (FPD). In porous rocks saturated with multiple fluid phases the attenuation of seismic waves by FPD is sensitive to the mesoscopic scale distribution of the respective fluids. The relationship between fluid distribution and seismic wave attenuation could be used, for example, to assess the effectiveness of residual trapping of carbon dioxide (CO2) in the subsurface. Determining such relationships requires validating models of FPD with accurate laboratory measurements of seismic wave attenuation and modulus dispersion over a broad frequency range, and, in addition, characterising the fluid distribution during experiments. To address this challenge, experiments were performed on a Berea sandstone sample in which the exsolution of CO2 from water in the pore space of the sample was induced by a reduction in pore pressure. The fluid distribution was determined with X-ray computed tomography (CT) in a first set of experiments. The CO2 exosolved predominantly near the outlet, resulting in a heterogeneous fluid distribution along the sample length. In a second set of experiments, at similar pressure and temperature conditions, the forced oscillation method was used to measure the attenuation and modulus dispersion in the partially saturated sample over a broad frequency range (0.1 - 1000 Hz). Significant P-wave attenuation and dispersion was observed, while S-wave attenuation and dispersion were negligible. These observations suggest that the dominant mechanism of attenuation and dispersion was FPD. The attenuation and dispersion by FPD was subsequently modelled by solving Biot’s quasi-static equations of poroelasticity with the finite element method. The fluid saturation distribution determined from the X-ray CT was used in combination with a Reuss average to define a single phase effective fluid bulk modulus. The numerical solutions agree well with the attenuation and modulus dispersion measured in the laboratory, supporting the interpretation that attenuation and dispersion was due to FPD occurring in the heterogenous distribution of the coexisting fluids. The numerical simulations have the advantage that the models can easily be improved by including sub-core scale porosity and permeability distributions, which can also be determined using X-ray CT. In the future this could allow for conducting experiments on heterogenous samples.</p>


Sign in / Sign up

Export Citation Format

Share Document