Dirty salt velocity inversion: The road to a clearer subsalt image

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB169-WB174 ◽  
Author(s):  
Shuo Ji ◽  
Tony Huang ◽  
Kang Fu ◽  
Zhengxue Li

For deep-water Gulf of Mexico, accurate salt geometry is critical to subsalt imaging. This requires the definition of both external and internal salt geometries. In recent years, external salt geometry (i.e., boundaries between allochthonous salt and background sediment) has improved a great deal due to advances in acquisition, velocity model building, and migration algorithms. But when it comes to defining internal salt geometry (i.e., intrasalt inclusions or dirty salt), no efficient method has yet been developed. In common industry practices, intrasalt inclusions (and thus their velocity anomalies) are generally ignored during the model building stages. However, as external salt geometries reach higher levels of accuracy, it becomes more important to consider the once-ignored effects of dirty salt. We have developed a reflectivity-based approach for dirty salt velocity inversion. This method takes true-amplitude reverse time migration stack volumes as input, then estimates the dirty salt velocity based on reflectivity under a 1D assumption. Results from a 2D synthetic data set and a real 3D Wide Azimuth data set demonstrated that the reflectivity inversion scheme significantly improves the subsalt image for certain areas. In general, we believe that this method produces a better salt model than the traditional clean salt velocity approach.

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB175-WB182 ◽  
Author(s):  
Yan Huang ◽  
Bing Bai ◽  
Haiyong Quan ◽  
Tony Huang ◽  
Sheng Xu ◽  
...  

The availability of wide-azimuth data and the use of reverse time migration (RTM) have dramatically increased the capabilities of imaging complex subsalt geology. With these improvements, the current obstacle for creating accurate subsalt images now lies in the velocity model. One of the challenges is to generate common image gathers that take full advantage of the additional information provided by wide-azimuth data and the additional accuracy provided by RTM for velocity model updating. A solution is to generate 3D angle domain common image gathers from RTM, which are indexed by subsurface reflection angle and subsurface azimuth angle. We apply these 3D angle gathers to subsalt tomography with the result that there were improvements in velocity updating with a wide-azimuth data set in the Gulf of Mexico.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB27-WB39 ◽  
Author(s):  
Zheng-Zheng Zhou ◽  
Michael Howard ◽  
Cheryl Mifflin

Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. S307-S314 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Qingfeng Xue ◽  
Xu Chang ◽  
Tong W. Fei ◽  
...  

In the implementation of migration of multiples, reverse time migration (RTM) is superior to other migration algorithms because it can handle steeply dipping structures and offer high-resolution images of the complex subsurface. However, the RTM results using two-way wave equation contain high-amplitude, low-frequency noise and false images generated by improper wave paths in migration velocity model with sharp velocity interfaces or strong velocity gradients. To improve the imaging quality in RTM of multiples, we separate the upgoing and downgoing waves in the propagation of source and receiver wavefields. A complex function involved with the Hilbert transform is used in wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots required by the conventional wavefield separation technique. We applied migration of multiples with wavefield decomposition on a simple two-layer model and the Sigsbee 2B synthetic data set. Our results demonstrate that the proposed approach can improve the image generated by migration of multiples significantly.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA141-WCA151 ◽  
Author(s):  
Shuqian Dong ◽  
Yi Luo ◽  
Xiang Xiao ◽  
Sergio Chávez-Pérez ◽  
Gerard T. Schuster

Imaging of subsalt sediments is a challenge for traditional migration methods such as Kirchhoff and one-way wave-equation migration. Consequently, the more accurate two-way method of reverse-time migration (RTM) is preferred for subsalt imaging, but its use can be limited by high computation cost. To overcome this problem, a 3D target-oriented reverse-time datuming (RTD) method is presented, which can generate redatumed data economically in target areas beneath complex structures such as salt domes. The redatumed data in the target area then can be migrated inexpensively using a traditional migration method. If the target area is much smaller than the acquisition area, computation costs are reduced significantly by the use of a novel bottom-up strategy to calculate the extrapolated Green’s functions. Target-oriented RTD is tested on 2D and 3D SEG/EAGE synthetic data sets and a 3D field data set from the Gulf of Mexico. Results show that target-oriented RTD combined with standard migration can image sediments beneath complex structures accurately with much less calculation effort than full volume RTM. The requirement is that the area over the target zone is smaller than that of the acquisition survey.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. S263-S270 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Lele Zhang ◽  
Xu Chang ◽  
Zhenxing Yao

Free-surface-related multiples are usually regarded as noise in conventional seismic processing. However, they can provide extra illumination of the subsurface and thus have been used in migration procedures, e.g., in one- and two-way wave-equation migrations. The disadvantage of the migration of multiples is the migration artifacts generated by the crosscorrelation of different seismic events, e.g., primaries and second-order free-surface-related multiples, so the effective elimination of migration artifacts is crucial for migration of multiples. The angle domain common image gather (ADCIG) is a suitable domain for testing the correctness of a migration velocity model. When the migration velocity model is correct, all the events in ADCIGs should be flat, and this provides a criterion for removing the migration artifacts. Our approach first obtains ADCIGs during reverse time migration and then applies a high-resolution parabolic Radon transform to all ADCIGs. By doing so, most migration artifacts will reside in the nonzero curvature regions in the Radon domain, and then a muting procedure can be implemented to remove the data components outside the vicinity of zero curvature. After the application of an adjoint Radon transform, the filtered ADCIGs are obtained and the final denoised migration result is generated by stacking all filtered ADCIGs. A three-flat-layer velocity model and the Marmousi synthetic data set are used for numerical experiments. The numerical results revealed that the proposed approach can eliminate most artifacts generated by migration of multiples when the migration velocity model is correct.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB119-WB126 ◽  
Author(s):  
Elive Menyoli ◽  
Shengwen Jin ◽  
Shiyong Xu ◽  
Stuart Graber

Marine wide-azimuth data in the Gulf of Mexico, reverse time migration (RTM) and anisotropic velocity models have led to significant improvement in subsalt imaging. However, imaging of some steeply dipping subsalt targets such as three-way closures against salt is still difficult. This can be attributed to poor illumination and noise contaminations from various shot records. We apply the visibility analysis method that quantitatively determines which shot records contribute most energy on a specific subsalt prospect area. As a result we selectively migrate only those shot records thereby reducing noise contamination from low energy contributing shot records, improving signal continuity and better trap definition in the target area. Like conventional illumination analysis, the computation takes into account the overburden velocity distribution, acquisition geometry, target reflectivity and dip angle. We used 2D and 3D synthetic data examples to test the concepts and applicability of the method. A Gulf of Mexico case study example using wide-azimuth data demonstrated its use in an industry scale project. It is shown that for the particular 60°–65° subsalt target of interest only 30% of the wide-azimuth shot records are sufficient for the imaging. By reducing noise, the image results show significant improvement in the subsalt area compared to the full shot record RTM volume.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. S111-S119 ◽  
Author(s):  
Hervé Chauris ◽  
Mondher Benjemaa

Reverse-time migration is a well-known method based on a single-scattering approximation; it is designed to obtain seismic images in the case of a complex subsurface. It can, however, be a very time-consuming task because the number of computations is directly proportional to the number of processed sources. In the context of velocity model-building, iterative approaches require that one derives a series of migrated sections for different velocity models. We propose to replace the summation over sources by a summation over depth offsets or time delays defined in the subsurface. For that, we have developed a new relationship between two migrated sections obtained for two different velocity models. Starting from one of the two images, we obtain a second section correctly and efficiently. For each time delay, we compute a generalized source term by extending the concept of exploding reflector to nonzero offset. We obtain the final migrated section by solving the same wave equation in the perturbed model with the modified source term. Our work included testing the methodology on 2D synthetic data sets, particularly when the initial and perturbed velocity models differ greatly.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. S1-S9 ◽  
Author(s):  
Yibo Wang ◽  
Xu Chang ◽  
Hao Hu

Prestack reverse time migration (RTM) is usually regarded as an accurate imaging tool and has been widely used in exploration. Conventional RTM only uses primaries and treats free-surface related multiples as noise; however, free-surface related multiples can sometimes provide extra illumination of the subsurface, and this information could be used in migration procedures. There are many migration methods using free-surface related multiples, but most approaches need to predict multiples, which is time consuming and prone to error. We discovered a new RTM approach that uses the primaries and the free-surface related multiples simultaneously. Compared with migration methods that only use free-surface related multiples, the proposed approach can provide comparable migration results and does not need multiple predictions. In our approach, the source function in conventional RTM was replaced with recorded field data including primaries and free-surface related multiples, together with a synthetic wavelet; the back-propagated primaries in the conventional RTM were replaced with complete recorded field data. The imaging condition of the proposed approach was the same as the crosscorrelation imaging condition of conventional RTM. A three-layer velocity model with scatterers and the Sigsbee 2B synthetic data set were used for numerical experiments. The numerical results showed that the proposed approach can cover a wider range of the subsurface and provide better illumination compared with conventional RTM. The proposed approach was easy to implement and avoided tedious multiple prediction; it might be significant for general complex subsurface imaging.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. T167-T174 ◽  
Author(s):  
Dan Kosloff ◽  
Reynam C. Pestana ◽  
Hillel Tal-Ezer

A new scheme for the calculation of spatial derivatives has been developed. The technique is based on recursive derivative operators that are generated by an [Formula: see text] fit in the spectral domain. The use of recursive operators enables us to extend acoustic and elastic wave simulations to shorter wavelengths. The method is applied to the numerical solution of the 2D acoustic wave equation and to the solution of the equations of 2D dynamic elasticity in an isotropic medium. An example of reverse-time migration of a synthetic data set shows that the numerical dispersion can be significantly reduced with respect to schemes that are based on finite differences. The method is tested for the solutions of the equations of dynamic elasticity by comparing numerical and analytic solutions to Lamb’s problem.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S81-S93 ◽  
Author(s):  
Mikhail M. Popov ◽  
Nikolay M. Semtchenok ◽  
Peter M. Popov ◽  
Arie R. Verdel

Seismic depth migration aims to produce an image of seismic reflection interfaces. Ray methods are suitable for subsurface target-oriented imaging and are less costly compared to two-way wave-equation-based migration, but break down in cases when a complex velocity structure gives rise to the appearance of caustics. Ray methods also have difficulties in correctly handling the different branches of the wavefront that result from wave propagation through a caustic. On the other hand, migration methods based on the two-way wave equation, referred to as reverse-time migration, are known to be capable of dealing with these problems. However, they are very expensive, especially in the 3D case. It can be prohibitive if many iterations are needed, such as for velocity-model building. Our method relies on the calculation of the Green functions for the classical wave equation by per-forming a summation of Gaussian beams for the direct and back-propagated wavefields. The subsurface image is obtained by cal-culating the coherence between the direct and backpropagated wavefields. To a large extent, our method combines the advantages of the high computational speed of ray-based migration with the high accuracy of reverse-time wave-equation migration because it can overcome problems with caustics, handle all arrivals, yield good images of steep flanks, and is readily extendible to target-oriented implementation. We have demonstrated the quality of our method with several state-of-the-art benchmark subsurface models, which have velocity variations up to a high degree of complexity. Our algorithm is especially suited for efficient imaging of selected subsurface subdomains, which is a large advantage particularly for 3D imaging and velocity-model refinement applications such as subsalt velocity-model improvement. Because our method is also capable of providing highly accurate migration results in structurally complex subsurface settings, we have also included the concept of true-amplitude imaging in our migration technique.


Sign in / Sign up

Export Citation Format

Share Document