Joint inversion of seismic refraction and resistivity data using layered models — Applications to groundwater investigation

Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. EN43-EN55 ◽  
Author(s):  
Niklas Juhojuntti ◽  
Jochen Kamm

We developed a method for joint inversion of seismic refraction and resistivity data, using sharp-boundary models with few layers (typically three). We demonstrated the usefulness of the approach via examples from near-surface case studies involving shallow groundwater exploration and geotechnical investigations, although it should also be applicable to other types of layered environments, e.g., sedimentary basins. In our model parameterization, the layer boundaries were common for the resistivity and velocity distributions. Within the layers, only lateral variations in the material parameters (resistivity and velocity) were allowed, and we assumed no correlation between these. The inversion was performed using a nonlinear least-squares algorithm, using lateral smoothing to the layer boundaries and to the materialparameters. Depending on the subsurface conditions, the smoothing can be applied either to the depth of the layer boundaries or to the layer thicknesses. The forward responses and Jacobian for refraction seismics were calculated through ray tracing. The resistivity computations were performed with finite differences and a cell-to-layer transform for the Fréchet derivatives. Our method performed well in synthetic tests, and in the case studies, the layer boundaries were in good agreement with in situ tests and seismic reflection data, although minimum-structure inversion generally has a better data fit due to more freedom to introduce model heterogeneity. We further found that our joint inversion approach can provide more accurate thickness estimates for seismic hidden layers.

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-25
Author(s):  
Ahmad Arnous ◽  
Martin Zeckra ◽  
Agostina Venerdini ◽  
Patricia Alvarado ◽  
Ramón Arrowsmith ◽  
...  

Abstract Uplift in the broken Andean foreland of the Argentine Santa Bárbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface.


2017 ◽  
Vol 141 ◽  
pp. 54-67 ◽  
Author(s):  
Zhanjie Shi ◽  
Richard W. Hobbs ◽  
Max Moorkamp ◽  
Gang Tian ◽  
Lu Jiang

Geophysics ◽  
1967 ◽  
Vol 32 (2) ◽  
pp. 331-362 ◽  
Author(s):  
D. H. Lennox ◽  
V. Carlson

Geophysical techniques may be used in groundwater exploration for the detection of groundwater itself, for the detection of potential aquifers, and for the detection of geologic situations favorable for the occurrence of aquifers. In Alberta, these buried preglacial valleys commonly contain deposits of permeable sands and gravels which, if of sufficient thickness and extent, can constitute important aquifers. Thus, location of the valleys by geophysical means leads to the identification of areas in which groundwater prospecting stands an improved chance of success. If, in addition, the geophysical methods can be used to indicate whether adequate thicknesses of permeable deposits exist in the valleys—that is, to detect the aquifers—the areas suitable for exploration can be further restricted, possibly to one or more locations with particularly encouraging prospects of a good groundwater supply. Resistivity was useful for the detection of both near‐surface and deeper‐lying permeable deposits and, hence, has some potential for the tracing of buried valley courses wherever these buried valleys contain significant sand and gravel deposits. The method had limited application, however, to the measurement of depths to bedrock because of a lack of resistivity contrast between drift and bedrock materials for a great part of the study area. The seismic refraction method was reasonably successful in the determination of bedrock depths and, thus, in the location of buried bedrock valleys. Success, however, depended on advance knowledge of velocity conditions in the surficial materials and in the uppermost bedrock layers, in order to understand and deal with the interpretative problem presented by a lack of velocity contrast between drift and bedrock materials in regions of elevated bedrock. Anomalously large calculated bedrock depths for regions of elevated bedrock were summarily rejected. Another interpretative problem was posed by the presence of a blind zone within the surficial materials. Blind‐zone velocity segments were introduced on all time‐distance plots on which this characteristic velocity did not originally appear, a method successful in about two thirds of the cases. There was no indication, other than a spurious one discounted by independent evidence, of correlation between the gravity results and the distribution of buried valleys or of any near‐surface materials. The Two Hills investigation effectively demonstrated the importance of adequate control—geophysical as well as geologic—for the successful interpretation of shallow geophysical exploration results in the Alberta plains.


Author(s):  
Paul Tarrant ◽  
David Baines

The cost, design, and in some instances, feasibility of directional drilling large diameter or lengthy pipeline river crossings is primarily dependent on ground conditions encountered during construction. Geotechnical investigations are commonly used to explore and assess subsurface conditions at proposed crossings. Ground conditions are determined using borehole drilling and near surface geophysics. Borehole drilling provides subsurface sediment stratigraphy and depth to bedrock information. Geophysics is used to provide information between borehole locations or where borehole drilling is determined to be too difficult or too costly. When used to augment borehole results, geophysical surveys provide more complete geologic cross-section models throughout the length of a proposed directional drill path. This paper presents an overview of the more common geophysical methodologies used to profile subsurface conditions at proposed pipeline crossings. The methods discussed include ground penetrating radar (GPR), seismic refraction profiling and electrical resistivity tomography (ERT). The appropriateness and feasibility of each method is discussed in terms relating to investigation objectives of geotechnical and pipeline design engineers. All three methods were applied to two survey lines at a typical river crossing site on the Bow River, downstream from Calgary, Alberta. Results from the overlapping surveys are presented and the capabilities and limitations for each method compared. Borehole information obtained within the survey area is used to corroborate the interpreted geophysical results.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1729-1739 ◽  
Author(s):  
Christophe Benech ◽  
Alain Tabbagh ◽  
Guy Desvignes

Magnetic and electromagnetic measurements are influenced by magnetic susceptibility and, thus, are widely used in geophysical surveys for archeology or pedology. To date, the data inversion is performed separately. A filtering process incorporating both types of data is presented here. After testing the algorithm with synthetic data, the algorithm is used in several case studies in archeological prospecting. This approach presents two advantages: establishing the presence of remanent magnetizations (viscous or thermoremanent), and achieving more refined depth analysis of the anomaly.


2021 ◽  
Author(s):  
Julien Guillemoteau ◽  
Mauricio Arboleda Zapata ◽  
François-Xavier Simon ◽  
Guillaume Hulin ◽  
Laurent Deschodt ◽  
...  

<p>Frequency domain loop-loop electromagnetic induction (FDEM) soundings using decametric coil-separations and multi-frequency sources have been used for decades to investigate the electrical conductivity of top 100 m of the subsurface. The most common coil configurations include horizontal and vertical co-planar (HCP and VCP) setups, and the data recorded with a rather large station spacing are typically processed assuming 1D layered media. In many geological situations, the subsurface shows significant lateral contrasts in the electrical material properties, especially, in regoliths close to earth’s surface. Here, the HCP and VCP 2D/3D sensitivity functions show complex and rather extended lateral sensitivity patterns. Therefore, in presence of high lateral variations in the uppermost layers, assuming 1D layered media for interpreting HCP and VCP profiles is often not valid. Furthermore, using rather large lateral station spacings often hinders the identification (and removal) of 2D/3D effects. In consequence, the overall 1D FDEM profiling procedure is often considered to be less robust than other electrical imaging techniques (e.g., DC tomography) to depict near-surface horizontal variations of the subsurface.</p><p>In shallower FDEM applications focusing on the characterization of the uppermost soil layers, portable loop-loop FDEM sensors (e.g. rigid boom systems with coil separations < 6 m) are used to explore the subsurface electrical properties. Here, it is commonly known that the PERP configuration shows better lateral resolution and apparent conductivity maps closer to the actual conductivity distribution. The latter feature is in fact crucial for the validity and applicability of the 1D approximation. The robustness of the PERP configuration regarding the 1D assumption can be explained by its sensitivity pattern showing a preponderant sign and a rather focused pattern, centered approximately below the receiver.</p><p>In order to evaluate the benefit of the PERP configuration for systems with decametric coil separation, we present two case studies, where densely sampled profiles of 1D inversions of multi-frequency FDEM HCP and PERP data are compared to 2D ERT inverted models and additional independent borehole and rigid-boom FDEM sensor data. In the first case study, we explore a coastal environment near Bourbourg, France, where only minor lateral variations in the subsurface are expected. Here, our results demonstrate that a 1D inversion of HCP and PERP data result in similar models. In the second case study, we explore debris flow deposits close to Braunsbach, Germany, which are characterized by significant near-surface lateral variability. In this case, only the 1D inversion of our PERP data results in a pseudo 2D model being in agreement with the inverted 2D ERT data. These two case studies confirm that the 1D inversion of PERP data (only) yields results that are more robust regarding 2D/3D artifacts than the 1D inversion of HCP data, or a joint inversion of HCP/PERP data. In conclusion, we propose that the 1D inversion of spatially densely sampled multi-frequency PERP data should be further evaluated in view of characterizing the lateral variations within the first 20 m of the subsurface because it could represent an efficient alternative to ERT methods in selected applications.  </p>


Sign in / Sign up

Export Citation Format

Share Document