fault scarps
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 48)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  

Glacially triggered faulting describes movement of pre-existing faults caused by a combination of tectonic and glacially induced isostatic stresses. The most impressive fault-scarps are found in northern Europe, assumed to be reactivated at the end of the deglaciation. This view has been challenged as new faults have been discovered globally with advanced techniques such as LiDAR, and fault activity dating has shown several phases of reactivation thousands of years after deglaciation ended. This book summarizes the current state-of-the-art research in glacially triggered faulting, discussing the theoretical aspects that explain the presence of glacially induced structures and reviews the geological, geophysical, geodetic and geomorphological investigation methods. Written by a team of international experts, it provides the first global overview of confirmed and proposed glacially induced faults, and provides an outline for modelling these stresses and features. It is a go-to reference for geoscientists and engineers interested in ice sheet-solid Earth interaction.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Adolfo Antonio Gutiérrez ◽  
Ricardo Mon ◽  
Ahmad Arnous ◽  
Rodolfo Germán Aranda-Viana

AbstractThis study shows the neotectonic deformation occurred in the southern piedmont of the Cumbres Calchaquíes, in the Amaicha and Tafí valleys. Neotectonic deformation manifests itself through faults, folds and diversions of drainage channels. The Amaicha valley is bounded to the north by the Tafí del Valle fault and to the south by the Los Cardones fault. The Cumbres Calchaquíes ride over the Sierra de Aconquija through the Los Cardones and Carapunco faults. The Carapunco fault also has a synestral component, responsible for generating an imbricated system of contractional fractures. In the study region many earthquakes of ≥ 3 and ≥ 4 magnitude coincide with regional faults evidencing its neotectonic activity. The seismic energy dissipated through materials with less cohesion that form the fill of the valleys, generating discrete fault scarps and strongly folded conglomerate strata. The foothills deposits of the Cumbres Calchaquíes absorbed most of the seismic energy released during the reactivation of the faults. Tectonic activity is deforming 630 a BP deposits in the Cumbres Calchaquíes piedmont.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 451
Author(s):  
Nasim Mozafari ◽  
Çağlar Özkaymak ◽  
Dmitry Tikhomirov ◽  
Susan Ivy-Ochs ◽  
Vasily Alfimov ◽  
...  

This study reports on the cosmogenic 36Cl dating of two normal fault scarps in western Turkey, that of the Manastır and Mugırtepe faults, beyond existing historical records. These faults are elements of the western Manisa Fault Zone (MFZ) in the seismically active Gediz Graben. Our modeling revealed that the Manastır fault underwent at least two surface ruptures at 3.5 ± 0.9 ka and 2.0 ± 0.5 ka, with vertical displacements of 3.3 ± 0.5 m and 3.6 ± 0.5 m, respectively. An event at 6.5 ± 1.6 ka with a vertical displacement of 2.7 ± 0.4 m was reconstructed on the Mugırtepe fault. We attribute these earthquakes to the recurring MFZ ruptures, when also the investigated faults slipped. We calculated average slip rates of 1.9 and 0.3 mm yr−1 for the Manastır and Mugırtepe faults, respectively.


2021 ◽  
Author(s):  
Harrison Gray ◽  
Christopher DuRoss ◽  
Sylvia Nicovich ◽  
Ryan Gold

Abstract. The development of colluvial wedges at the base of fault scarps following normal-faulting earthquakes serves as a sedimentary record of paleoearthquakes and is thus crucial in assessing seismic hazard. Although there is a large body of observations of colluvial wedge development, connecting this knowledge to the physics of sediment transport can open new frontiers in our understanding. To explore theoretical colluvial wedge evolution, we develop a cellular automata model driven by the production and disturbance (e.g. bioturbative reworking) of mobile regolith and fault scarp collapse. We consider both 90° and 60° dipping faults and allow the colluvial wedges to develop over 2,000 model years. By tracking sediment transport time, velocity, and provenance, we classify cells into analogs for the debris and wash sedimentary facies commonly described in paleoseismic studies. High values of mobile regolith production and disturbance rates produce relatively larger and more wash facies dominated wedges, whereas lower values produced relatively smaller, debris facies dominated wedges. Higher lateral collapse rates lead to more debris facies relative to wash facies. Many of the modelled colluvial wedges fully developed within 2000 model years after the earthquake with many being much faster when process rates are high. Finally, for scenarios with the same amount of vertical displacement, different size colluvial wedges developed depending on the rates of geomorphic processes and fault dip. A change in these variables, say by environmental change such as precipitation rates, could theoretically result in different colluvial wedge facies assemblages for the same characteristic earthquake rupture scenario. Finally, the stochastic nature of collapse events, when coupled with high disturbance, illustrate that multiple phases of colluvial deposition are theoretically possible for a single earthquake event.


Author(s):  
Nicolas Saspiturry ◽  
Benoit Issautier ◽  
Philippe Razin ◽  
Simon Andrieu ◽  
Eric Lasseur ◽  
...  

Abstract — The Mauléon basin, in the northwestern Pyrenean belt, is related to Early Cretaceous rifting and continental breakup. Here we review the evolution of depositional environments in the hyperextended Mauléon rift basin during Albian and Cenomanian time. This review includes the lithostratigraphy, regional distribution, boundaries, age and facies sedimentology of the basin’s syn-rift formations and their members. We construct paleogeographic maps to elucidate (1) the 3D distribution of sedimentary facies and depositional environments during the Albian and Cenomanian from the Iberian proximal margin to the hyperextended domain and (2) the link between major extensional structures and sedimentation during rifting and continental breakup. The Mauléon rift was supplied during most of the Albian by sediments from the Iberian proximal margin. The southern margin had a steep and abrupt topographic boundary related to a northward crustal rollover along the south-dipping Saint-Palais detachment. This feature controlled the deposition of base-of-slope conglomerates at the base of the margin that abruptly gave way to low-density turbidites, then hemipelagic deposits in the hyperextended domain. During latest Albian to Early Cenomanian time, continental breakup occurred in the eastern Mauléon basin and the vergence of the detachment systems reversed. Minor debris-flow deposits formed at the foot of fault scarps associated with the newly formed north-dipping detachments. Elsewhere, sediment from deltaic systems to the west in the Saint-Jean-de-Luz area deposited low-density turbidites in the hyperextended domain. During the post-rift stage, the flux of coarse sediment from the detachment footwall gradually declined as deformation waned, and low-density turbidites expanded onto the hyperextended domain from the European Late Cretaceous carbonate platform. These paleogeographic reconstructions, in addition to offering a synthetic view of the evolution of sedimentary environments during rifting, offer new insight into the post-rifting exhumation of the lower crust and mantle.


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 405
Author(s):  
Claudia Pirrotta ◽  
Graziella Barberi ◽  
Giovanni Barreca ◽  
Fabio Brighenti ◽  
Francesco Carnemolla ◽  
...  

A multidisciplinary work integrating structural, geodetic and seismological data was performed in the Catanzaro Trough (central Calabria, Italy) to define the seismotectonic setting of this area. The Catanzaro Trough is a structural depression transversal to the Calabrian Arc, lying in-between two longitudinal grabens: the Crati Basin to the north and the Mesima Basin to the south. The investigated area experienced some of the strongest historical earthquakes of Italy, whose seismogenic sources are still not well defined. We investigated and mapped the major WSW–ENE to WNW–ESE trending normal-oblique Lamezia-Catanzaro Fault System, bounding to the north the Catanzaro Trough. Morphotectonic data reveal that some fault segments have recently been reactivated since they have displaced upper Pleistocene deposits showing typical geomorphic features associated with active normal fault scarps such as triangular and trapezoidal facets, and displaced alluvial fans. The analysis of instrumental seismicity indicates that some clusters of earthquakes have nucleated on the Lamezia-Catanzaro Fault System. In addition, focal mechanisms indicate the prevalence of left-lateral kinematics on E–W roughly oriented fault plains. GPS data confirm that slow left-lateral motion occurs along this fault system. Minor north-dipping normal faults were also mapped in the southern side of the Catanzaro Trough. They show eroded fault scarps along which weak seismic activity and negligible geodetic motion occur. Our study highlights that the Catanzaro Trough is a poliphased Plio-Quaternary extensional basin developed early as a half-graben in the frame of the tear-faulting occurring at the northern edge of the subducting Ionian slab. In this context, the strike-slip motion contributes to the longitudinal segmentation of the Calabrian Arc. In addition, the high number of seismic events evidenced by the instrumental seismicity, the macroseismic intensity distribution of the historical earthquakes and the scaling laws relating to earthquakes and seismogenic faults support the hypothesis that the Lamezia-Catanzaro Fault System may have been responsible for the historical earthquakes since it is capable of triggering earthquakes with magnitude up to 6.9.


2021 ◽  
Author(s):  
Peter Biermanns ◽  
Benjamin Schmitz ◽  
Silke Mechernich ◽  
Christopher Weismüller ◽  
Kujtim Onuzi ◽  
...  

Abstract. We describe two previously unreported, 5–7 km long normal fault scarps (NFS) occurring atop fault-related anticlines in the coastal ranges of the Dinarides fold-and-thrust belt in southern Montenegro, a region under predominant contraction. Both NFS show well-exposed, 6–9 m high, striated and locally polished fault surfaces in limestones, documenting active faulting during the Holocene. Sharply delimited ribbons on free rock faces show different color, varying karstification and lichen growth and suggest stepwise footwall exhumation, typical of repeated normal faulting earthquake events. Displacements, surface rupture lengths and geometries of the outcropping fault planes imply paleoearthquakes with Mw ≈ 6 ± 0.5 and slip rates of c. 0.3–0.5 mm/yr since the Last Glacial Maximum. Slip rates based on cosmogenic 36Cl data from the scarps are significantly higher: modeling suggests 1.5 ± 0.1 mm/yr and 6–15 cm slip every c. 35–100 yrs, commencing c. 6 kyr ago. The total throw on both NFS – although poorly constrained – is estimated to max. 200 m, and offsets the basal thrust of a regionally important tectonic unit. Both NFS are incipient extensional structures that postdate growth of the fault-related anticlines on top of which they occur. Interestingly, the position of the extensional features agrees with recent geodetic data, suggesting that our study area is located exactly at the transition from NE-SW-directed shortening in the northwest to NE-SW-directed extension to the southeast. While the contraction reflects ongoing Adria-Europe convergence taken up along the frontal portions of the Dinarides, the incipient extensional structures might be induced by rollback of the Hellenic slab in the SE, whose effects on the upper plate appear to be migrating along-strike the Hellenides towards the northwest. The newly found NFS provide evidence for a kinematic change of a thrust belt segment over time. Alternatively, the NFS might be regarded as second-order features accommodating changes in dip of the underlying first-order thrust faults to which they are tied genetically.


Geosphere ◽  
2021 ◽  
Author(s):  
Andrea Hampel ◽  
Ralf Hetzel ◽  
Maria-Sophie Erdmann

Along the eastern front of the Teton Range, northeastern Basin and Range province (Wyoming, USA), well-preserved fault scarps that formed across moraines, river terraces, and other geomorphological features indicate that multiple earthquakes ruptured the range-bounding Teton normal fault after the Last Glacial Maximum (LGM). Here we use high-resolution digital eleva­tion models derived from lidar data to determine the vertical slip distribution along strike of the Teton fault from 54 topographic profiles across tectonically offset geomorphological features along the entire Teton Range front. We find that offset LGM moraines and glacially striated surfaces show higher vertical displacements than younger fluvial terraces, which formed at valley exits upstream of LGM terminal moraines. Our results reveal that the tectonic off­sets preserved in the fault scarps are post-LGM in age and that the postglacial slip distribution along strike of the Teton fault is asymmetric with respect to the Teton Range center, with the maximum vertical displacements (27–23 m) being located north of Jenny Lake and along the southwestern shore of Jack­son Lake. As indicated by earlier three-dimensional numerical models, this asymmetric slip distribution results from postglacial unloading of the Teton fault, which experienced loading by the Yellowstone ice cap and valley glaciers in the Teton Range during the last glaciation.


Geologija ◽  
2021 ◽  
Vol 64 (1) ◽  
pp. 21-33
Author(s):  
Manuel DIERCKS ◽  
Christoph GRÜTZNER ◽  
Marko VRABEC ◽  
Kamil USTASZEWSKI

In tectonically active mountain ranges, the landscape is shaped by the interplay of erosion/sedimentation and tectonically driven crustal deformation. Characteristic landforms such as moraines, wind gaps, fault scarps, and river terraces can be used to decipher the landscape evolution. However, the available data often allow for different interpretations. Here we study the Pradol (Pradolino) Valley in Western Slovenia, a deeply incised canyon whose floor rests several hundreds of metres above the surrounding valleys. We use high-resolution digital elevation models, geomorphic indices and field observations to unravel the evolution of this peculiar landform. We present a six-stage evolution model of the canyon that includes the blockage of valleys by advancing glaciers, river diversion, and rapid incision due to a high discharge of post-glacial meltwater. The formation of the Pradol Valley was most likely facilitated by an underlying fault that serves as an easily erodible weakness zone in the Mesozoic limestones. Our model indicates that the formation of the canyon could have occurred during the last glaciation, which results in incision rates of several cm/yr. With the proposed model we can explain all remote and field observations available. Our study shows that a complex interplay of different landscape-shaping processes is needed to explain the occurrence of the Pradol dry valley and that rapid changes in the morphology occurred after the last glacial maximum.


Sign in / Sign up

Export Citation Format

Share Document