scholarly journals Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. T63-T77 ◽  
Author(s):  
Jiubing Cheng ◽  
Tariq Alkhalifah ◽  
Zedong Wu ◽  
Peng Zou ◽  
Chenlong Wang

In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied [Formula: see text]-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

The displacements due to a radiating point source in an infinite anisotropic elastic medium are found in terms of Fourier integrals. The integrals are evaluated asymptotically, yielding explicit expressions for displacements at points far from the source. The relative amplitudes of waves from a point source are thus determined, and it is found that although in general the decay of wave amplitudes is proportional to the distance from the source, it is possible that in certain directions the decay is less than this. The method used in this paper is also shown to be an alternative way of deriving known results concerning the geometry of the propagation of disturbances. As an example, the radiation in a transversely isotropic medium from an isolated force varying harmonically with time is discussed.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. T83-T91 ◽  
Author(s):  
Zhen-Dong Zhang ◽  
Tariq Alkhalifah ◽  
Zedong Wu

P-wave extrapolation in anisotropic media suffers from SV-wave artifacts and computational dependency on the complexity of anisotropy. The anisotropic pseudodifferential wave equation cannot be solved using an efficient time-domain finite-difference (FD) scheme directly. The wavenumber domain allows us to handle pseudodifferential operators accurately; however, it requires either smoothly varying media or more computational resources. In the limit of elliptical anisotropy, the pseudodifferential operator reduces to a conventional operator. Therefore, we have developed a hybrid-domain solution that includes a space-domain FD solver for the elliptical anisotropic part of the anisotropic operator and a wavenumber-domain low-rank scheme to solve the pseudodifferential part. Thus, we split the original pseudodifferential operator into a second-order differentiable background and a pseudodifferential correction term. The background equation is solved using the efficient FD scheme, and the correction term is approximated by the low-rank approximation. As a result, the correction wavefield is independent of the velocity model, and, thus, it has a reduced rank compared with the full operator. The total computation cost of our method includes the cost of solving a spatial FD time-step update plus several fast Fourier transforms related to the rank. The accuracy of our method is of the order of the FD scheme. Applications to a simple homogeneous tilted transverse isotropic (TTI) medium and modified BP TTI models demonstrate the effectiveness of the approach.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. T51-T60 ◽  
Author(s):  
Zedong Wu ◽  
Tariq Alkhalifah

Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that [Formula: see text]. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.


2020 ◽  
Vol 14 (12) ◽  
pp. 2791-2798
Author(s):  
Xiaoqun Qiu ◽  
Zhen Chen ◽  
Saifullah Adnan ◽  
Hongwei He

Sign in / Sign up

Export Citation Format

Share Document