A goal-oriented adaptive finite-element method for 3D scattered airborne electromagnetic method modeling

Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. E337-E346 ◽  
Author(s):  
Changchun Yin ◽  
Bo Zhang ◽  
Yunhe Liu ◽  
Jing Cai

We have developed a goal-oriented adaptive unstructured finite-element method based on the scattered field for 3D frequency-domain airborne electromagnetic (AEM) modeling. To guarantee the EM field divergence free within each element and the continuity conditions at electrical material interfaces, we have used the edge-based shape functions to approximate the electrical field. The posterior error for finite-element adaptive meshing procedure is estimated from the continuity of the normal component of the current density, whereas the influence functions are estimated by solving a dual forward problem. Because the imaginary part of the scattered current is discontinuous and the real part is continuous, we use the latter to estimate the posterior error. For the multisources and multifrequencies problem in AEM, we calculate the weighted posterior error for each element by considering only those transmitter-receiver pairs that do not adhere to our convergence criteria. Finally, we add a minimum volume constraint to improve the stability of the adaptive procedure. To check the accuracy, we compared our adaptive results with the semianalytical solutions for AEM systems over a half-space model. To test the effectiveness of our algorithm for multiple sources and multiple frequencies of AEM, we analyzed meshes for separate frequencies and for combined frequencies. Finally, we calculated the AEM responses over a hill model with and without embedded abnormal bodies to prove the feasibility of our algorithm for AEM variable topography modeling.

2011 ◽  
Vol 10 (2) ◽  
pp. 339-370 ◽  
Author(s):  
Yunqing Huang ◽  
Hengfeng Qin ◽  
Desheng Wang ◽  
Qiang Du

AbstractWe present a novel adaptive finite element method (AFEM) for elliptic equations which is based upon the Centroidal Voronoi Tessellation (CVT) and superconvergent gradient recovery. The constructions of CVT and its dual Centroidal Voronoi Delaunay Triangulation (CVDT) are facilitated by a localized Lloyd iteration to produce almost equilateral two dimensional meshes. Working with finite element solutions on such high quality triangulations, superconvergent recovery methods become particularly effective so that asymptotically exact a posteriori error estimations can be obtained. Through a seamless integration of these techniques, a convergent adaptive procedure is developed. As demonstrated by the numerical examples, the new AFEM is capable of solving a variety of model problems and has great potential in practical applications.


2013 ◽  
Vol 387 ◽  
pp. 159-163
Author(s):  
Yi Chern Hsieh ◽  
Minh Hai Doan ◽  
Chen Tai Chang

We present the analyses of dynamics behaviors on a stroller wheel by three dimensional finite element method. The vibration of the wheel system causes by two different type barriers on the road as an experiment design to mimic the real road conditions. In addition to experiment analysis, we use two different packages to numerically simulate the wheel system dynamics activities. Some of the simulation results have good agreement with the experimental data in this research. Other interesting data will be measured and analyzed by us for future study and we will investigate them by using adaptive finite element method for increasing the precision of the computation results.


Author(s):  
B Ashby ◽  
C Bortolozo ◽  
A Lukyanov ◽  
T Pryer

Summary In this article, we present a goal-oriented adaptive finite element method for a class of subsurface flow problems in porous media, which exhibit seepage faces. We focus on a representative case of the steady state flows governed by a nonlinear Darcy–Buckingham law with physical constraints on subsurface-atmosphere boundaries. This leads to the formulation of the problem as a variational inequality. The solutions to this problem are investigated using an adaptive finite element method based on a dual-weighted a posteriori error estimate, derived with the aim of reducing error in a specific target quantity. The quantity of interest is chosen as volumetric water flux across the seepage face, and therefore depends on an a priori unknown free boundary. We apply our method to challenging numerical examples as well as specific case studies, from which this research originates, illustrating the major difficulties that arise in practical situations. We summarise extensive numerical results that clearly demonstrate the designed method produces rapid error reduction measured against the number of degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document