volume integral equation
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 38)

H-INDEX

24
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6996
Author(s):  
Jungki Lee ◽  
Mingu Han

In this paper, the volume integral equation method (VIEM) is introduced for the numerical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-dimensional elastostatic inclusion problem, VIEM results are first presented for a range of single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under uniform remote tensile loading. We next considered single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under remote shear loading. The authors hope that the results using the VIEM cited in this paper will be established as reference values for verifying the results of similar research using other analytical and numerical methods.


Author(s):  
Jungki Lee

A number of analytical techniques are available for the stress analysis of inclusion problems when the geometries of inclusions are simple (e.g., cylindrical, spherical or ellipsoidal) and when they are well separated [9, 41, 52]. However, these approaches cannot be applied to more general problems where the inclusions are anisotropic and arbitrary in shape, particularly when their concentration is high. Thus, stress analysis of heterogeneous solids or analysis of elastic wave scattering problems in heterogeneous solids often requires the use of numerical techniques based on either the finite element method (FEM) or the boundary integral equation method (BIEM). However, these methods become problematic when dealing with elastostatic problems or elastic wave scattering problems in unbounded media containing anisotropic and/or heterogeneous inclusions of arbitrary shapes. It has been demonstrated that the volume integral equation method (VIEM) can overcome such difficulties in solving a large class of inclusion problems [6,10,20,21,28–30]. One advantage of the VIEM over the BIEM is that it does not require the use of Green’s functions for anisotropic inclusions. Since the elastodynamic Green’s functions for anisotropic media are extremely difficult to calculate, the VIEM offers a clear advantage over the BIEM. In addition, the VIEM is not sensitive to the geometry or concentration of the inclusions. Moreover, in contrast to the finite element method, where the full domain needs to be discretized, the VIEM requires discretization of the inclusions only.


Sign in / Sign up

Export Citation Format

Share Document