Identification of morphologies of gas hydrate distribution based on amplitude variation with angle analysis

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. B143-B154 ◽  
Author(s):  
Tao Liu ◽  
Xuewei Liu

There are two basic distribution morphologies of gas hydrates in nature: pore filling and fracture filling. Identification of gas hydrate morphologies is essential for improved resource evaluation and exploitation. Improper exploitation may cause seafloor instability, lead to atmospheric venting, and exacerbate the greenhouse effect. To identify gas hydrate morphologies, we combine rock-physics modeling and amplitude variation with angle (AVA) analysis to study the theoretical AVA patterns of the bottom simulating reflector (BSR) beneath the pore-filling and fracture-filling gas hydrate bearing sediments (GHBS), respectively. The theoretical results indicate completely different AVA patterns between these two morphologies. The AVA of the BSR beneath the pore-filling GHBS shows a class III anomaly with negative intercept and gradient. However, the AVA of the BSR beneath the fracture-filling GHBS exhibits a class IV anomaly with a negative intercept and positive gradient. In addition, the theoretical AVA intercept and gradient are affected by the fracture orientation, manifesting an anisotropic signature varying with the fracture dip and azimuth. The processed prestack data at well sites 08 and 16 in the northern South China Sea are selected for testing our method. The AVA analysis of the actual BSRs beneath the pore-filling and fracture-filling GHBS at these sites shows class III and IV responses, respectively, in agreement with our theoretical results. The gas hydrate saturations are also estimated by comparing the theoretical AVA with the actual AVA patterns. The estimations at site 08 are close to those estimated from the pore-water freshening.

Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. C1-C6 ◽  
Author(s):  
Maheswar Ojha ◽  
Kalachand Sain ◽  
Timothy A. Minshull

We estimate the saturations of gas hydrate and free gas based on measurements of seismic-reflection amplitude variation with offset (AVO) for a bottom-simulating reflector coupled with rock-physics modeling. When we apply the approach to data from a seismic line in the Makran accretionary prism in the Arabian Sea, the results reveal lateral variations of gas-hydrate and free-gas saturations of 4–29% and 1–7.5%, respectively, depending on the rock-physics model used to relate seismic velocity to saturation. Our approach is simple and easy to implement.


2021 ◽  
pp. 1-42
Author(s):  
Maheswar Ojha ◽  
Ranjana Ghosh

The Indian National Gas Hydrate Program Expedition-01 in 2006 has discovered gas hydrate in Mahanadi offshore basin along the eastern Indian margin. However, well log analysis, pressure core measurements and Infra-Red (IR) anomalies reveal that gas hydrates are distributed as disseminated within the fine-grained sediment, unlike massive gas hydrate deposits in the Krishna-Godavari basin. 2D multi-channel seismic section, which crosses the Holes NGHP-01-9A and 19B located at about 24 km apart shows a continuous bottom-simulating reflector (BSR) along it. We aim to investigate the prospect of gas hydrate accumulation in this area by integrating well log analysis and seismic methods with rock physics modeling. First, we estimate gas hydrate saturation at these two Holes from the observed impedance using the three-phase Biot-type equation (TPBE). Then we establish a linear relationship between gas hydrate saturation and impedance contrast with respect to the water-saturated sediment. Using this established relation and impedance obtained from pre-stack inversion of seismic data, we produce a 2D gas hydrate-distribution image over the entire seismic section. Gas hydrate saturation estimated from resistivity and sonic data at well locations varies within 0-15%, which agrees well with the available pressure core measurements at Hole 19. However, the 2D map of gas hydrate distribution obtained from our method shows maximum gas hydrate saturation is about 40% just above the BSR between the CDP (common depth point) 1450 and 2850. The presence of gas-charged sediments below the BSR is one of the reasons for the strong BSR observed in the seismic section, which is depicted as low impedance in the inverted impedance section. Closed sedimentary structures above the BSR are probably obstructing the movements of free-gas upslope, for which we do not see the presence of gas hydrate throughout the seismic section above the BSR.


2020 ◽  
Author(s):  
Cunzhi Wu ◽  
Zuoxiu He ◽  
Feng Zhang ◽  
Lin Wang ◽  
Jiushuan Wang ◽  
...  

2019 ◽  
Vol 7 (3) ◽  
pp. SG11-SG22 ◽  
Author(s):  
Heather Bedle

Gas hydrates in the oceanic subsurface are often difficult to image with reflection seismic data, particularly when the strata run parallel to the seafloor and in regions that lack the presence of a bottom-simulating reflector (BSR). To address and understand these imaging complications, rock-physics modeling and seismic attribute analysis are performed on modern 2D lines in the Pegasus Basin in New Zealand, where the BSR is not continuously imaged. Based on rock-physics and seismic analyses, several seismic attribute methods identify weak BSR reflections, with the far-angle stack data being particularly effective. Rock modeling results demonstrate that far-offset seismic data are critical in improving the imaging and interpretation of the base of the gas hydrate stability zone. The rock-physics modeling results are applied to the Pegasus 2009 2D data set that reveals a very weak seismic reflection at the base of the hydrates in the far-angle stack. This often-discontinuous reflection is significantly weaker in amplitude than typical BSRs associated with hydrates. These weak far-angle stack BSRs often do not appear clearly in full stack data, the most commonly interpreted seismic data type. Additional amplitude variation with angle (AVA) attribute analyses provide insight into identifying the presence of gas hydrates in regions lacking a strong BSR. Although dozens of seismic attributes were investigated for their ability to reveal weak reflections at the base of the gas hydrate stability zone, those that enhance class 2 AVA anomalies were most effective, particularly the seismic fluid factor attribute.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhiqi Guo ◽  
Xueying Wang ◽  
Jian Jiao ◽  
Haifeng Chen

A rock physics model was established to calculate the P-wave velocity dispersion and attenuation caused by the squirt flow of fluids in gas hydrate-bearing sediments. The critical hydrate saturation parameter was introduced to describe different ways of hydrate concentration, including the mode of pore filling and the co-existence mode of pore filling and particle cementation. Rock physical modeling results indicate that the P-wave velocity is insensitive to the increase in gas hydrate saturation for the mode of pore filling, while it increases rapidly with increasing gas hydrate saturation for the co-existence mode of pore filling and particle cementation. Meanwhile, seismic modeling results show that both the PP and mode-converted PS reflections are insensitive to the gas hydrate saturation that is lower than the critical value, while they tend to change obviously for the hydrate saturation that is higher than the critical value. These can be interpreted that only when gas hydrate begins to be part of solid matrix at high gas hydrate saturation, it represents observable impact on elastic properties of the gas hydrate-bearing sediments. Synthetic seismograms are calculated for a 2D heterogeneous model where the gas hydrate saturation varies vertically and layer thickness of the gas hydrate-bearing sediment varies laterally. Modeling results show that larger thickness of the gas hydrate-bearing layer generally corresponds to stronger reflection amplitudes from the bottom simulating reflector.


Sign in / Sign up

Export Citation Format

Share Document