Seismic attribute enhancement of weak and discontinuous gas hydrate bottom-simulating reflectors in the Pegasus Basin, New Zealand

2019 ◽  
Vol 7 (3) ◽  
pp. SG11-SG22 ◽  
Author(s):  
Heather Bedle

Gas hydrates in the oceanic subsurface are often difficult to image with reflection seismic data, particularly when the strata run parallel to the seafloor and in regions that lack the presence of a bottom-simulating reflector (BSR). To address and understand these imaging complications, rock-physics modeling and seismic attribute analysis are performed on modern 2D lines in the Pegasus Basin in New Zealand, where the BSR is not continuously imaged. Based on rock-physics and seismic analyses, several seismic attribute methods identify weak BSR reflections, with the far-angle stack data being particularly effective. Rock modeling results demonstrate that far-offset seismic data are critical in improving the imaging and interpretation of the base of the gas hydrate stability zone. The rock-physics modeling results are applied to the Pegasus 2009 2D data set that reveals a very weak seismic reflection at the base of the hydrates in the far-angle stack. This often-discontinuous reflection is significantly weaker in amplitude than typical BSRs associated with hydrates. These weak far-angle stack BSRs often do not appear clearly in full stack data, the most commonly interpreted seismic data type. Additional amplitude variation with angle (AVA) attribute analyses provide insight into identifying the presence of gas hydrates in regions lacking a strong BSR. Although dozens of seismic attributes were investigated for their ability to reveal weak reflections at the base of the gas hydrate stability zone, those that enhance class 2 AVA anomalies were most effective, particularly the seismic fluid factor attribute.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wolfram H. Geissler ◽  
A. Catalina Gebhardt ◽  
Felix Gross ◽  
Jutta Wollenburg ◽  
Laura Jensen ◽  
...  

Abstract Slope failure like in the Hinlopen/Yermak Megaslide is one of the major geohazards in a changing Arctic environment. We analysed hydroacoustic and 2D high-resolution seismic data from the apparently intact continental slope immediately north of the Hinlopen/Yermak Megaslide for signs of past and future instabilities. Our new bathymetry and seismic data show clear evidence for incipient slope instability. Minor slide deposits and an internally-deformed sedimentary layer near the base of the gas hydrate stability zone imply an incomplete failure event, most probably about 30000 years ago, contemporaneous to or shortly after the Hinlopen/Yermak Megaslide. An active gas reservoir at the base of the gas hydrate stability zone demonstrate that over-pressured fluids might have played a key role in the initiation of slope failure at the studied slope, but more importantly also for the giant HYM slope failure. To date, it is not clear, if the studied slope is fully preconditioned to fail completely in future or if it might be slowly deforming and creeping at present. We detected widespread methane seepage on the adjacent shallow shelf areas not sealed by gas hydrates.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. B19-B34 ◽  
Author(s):  
Stefan Bünz ◽  
Jürgen Mienert ◽  
Maarten Vanneste ◽  
Karin Andreassen

Geophysical evidence for gas hydrates is widespread along the northern flank of the Storegga Slide on the mid-Norwegian margin. Bottom-simulating reflectors (BSR) at the base of the gas hydrate stability zone cover an area of approximately 4000 km[Formula: see text], outside but also inside the Storegga Slide scar area. Traveltime inversion and forward modeling of multicomponent wide-angle seismic data result in detailed P- and S-wave velocities of hydrate- and gas-bearing sediment layers. The relationship between the velocities constrains the background velocity model for a hydrate-free, gas-free case. The seismic velocities indicate that hydrate concentrations in the pore space of sediments range between 3% and 6% in a zone that is as much as 50 m thick overlying the BSR. Hydrates are most likely disseminated, neither cementing the sediment matrix nor affecting the stiffness of the matrix noticeably. Average free-gas concentrations beneath the hydrate stability zone are approximately 0.4% to 0.8% of the pore volume, assuming a homogeneous gas distribution. The free-gas zone underneath the BSR is about 80 m thick. Amplitude and reflectivity analyses suggest a rather complex distribution of gas along specific sedimentary strata rather than along the base of the gas hydrate stability zone (BGHS). This gives rise to enhanced reflections that terminate at the BGHS. The stratigraphic control on gas distribution forces the gas concentration to increase slightly with depth at certain locations. Gas-bearing layers can be as thin as 2 m.


2020 ◽  
Author(s):  
Francesco Turco ◽  
Andrew Gorman ◽  
Gareth Crutchley ◽  
Leonardo Azevedo ◽  
Dario Grana ◽  
...  

<p>Geophysical data indicate that the Hikurangi subduction margin on New Zealand’s East Coast contains a large gas hydrate province. Gas hydrates are widespread in shallow sediments across the margin, and locally intense fluid seepage associated with methane hydrate is observed in several areas. Glendhu and Honeycomb ridges lie at the toe of the Hikurangi deformation wedge at depths ranging from 2100 to 2800 m. These two parallel four-way closure systems host concentrated methane hydrate deposits. The control on hydrate formation at these ridges is governed by steeply dipping permeable strata and fractures, which allow methane to flow upwards into the gas hydrate stability zone. Hydrate recycling at the base of the hydrate stability zone may contribute to the accumulation of highly concentrated hydrate in porous layers.<br>To improve the characterisation of the hydrate systems at Glendhu and Honeycomb ridges, we estimate hydrate saturation and porosity of the concentrated hydrate deposits. We first estimate elastic properties (density, compressional and shear-wave velocities) of the gas hydrate stability zone through full-waveform inversion and <span>iterative geostatistical seismic amplitude versus angle (AVA) inversion</span>. We then perform a petrophysical inversion based on a rock physics model to predict gas hydrate saturation and porosity of the hydrate bearing sediments along the two ridges.<br>Our results indicate that the high seismic amplitudes correspond to the top interface of highly concentrated hydrate deposit, with peak saturations around 35%. Because of the resolution of the seismic data we assume that the estimated properties are averaged over layers of 10 to 20 meters thickness. These saturation values are in agreement with studies conducted in other areas of concentrated hydrate accumulations in similar geologic settings.</p>


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


Geosciences ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 188 ◽  
Author(s):  
Evgeny Chuvilin ◽  
Valentina Ekimova ◽  
Boris Bukhanov ◽  
Sergey Grebenkin ◽  
Natalia Shakhova ◽  
...  

Destabilization of intrapermafrost gas hydrate is one possible reason for methane emission on the Arctic shelf. The formation of these intrapermafrost gas hydrates could occur almost simultaneously with the permafrost sediments due to the occurrence of a hydrate stability zone after sea regression and the subsequent deep cooling and freezing of sediments. The top of the gas hydrate stability zone could exist not only at depths of 200–250 m, but also higher due to local pressure increase in gas-saturated horizons during freezing. Formed at a shallow depth, intrapermafrost gas hydrates could later be preserved and transform into a metastable (relict) state. Under the conditions of submarine permafrost degradation, exactly relict hydrates located above the modern gas hydrate stability zone will, first of all, be involved in the decomposition process caused by negative temperature rising, permafrost thawing, and sediment salinity increasing. That’s why special experiments were conducted on the interaction of frozen sandy sediments containing relict methane hydrates with salt solutions of different concentrations at negative temperatures to assess the conditions of intrapermafrost gas hydrates dissociation. Experiments showed that the migration of salts into frozen hydrate-containing sediments activates the decomposition of pore gas hydrates and increase the methane emission. These results allowed for an understanding of the mechanism of massive methane release from bottom sediments of the East Siberian Arctic shelf.


2020 ◽  
Author(s):  
Cunzhi Wu ◽  
Zuoxiu He ◽  
Feng Zhang ◽  
Lin Wang ◽  
Jiushuan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document