Migration deconvolution using domain decomposition

Geophysics ◽  
2021 ◽  
pp. 1-61
Author(s):  
Luana Nobre Osorio ◽  
Bruno Pereira-Dias ◽  
André Bulcão ◽  
Luiz Landau

Least-squares migration (LSM) is an effective technique for mitigating blurring effects and migration artifacts generated by the limited data frequency bandwidth, incomplete coverage of geometry, source signature, and unbalanced amplitudes caused by complex wavefield propagation in the subsurface. Migration deconvolution (MD) is an image-domain approach for least-squares migration, which approximates the Hessian operator using a set of precomputed point spread functions (PSFs). We introduce a new workflow by integrating the MD and the domain decomposition (DD) methods. The DD techniques aim to solve large and complex linear systems by splitting problems into smaller parts, facilitating parallel computing, and providing a higher convergence in iterative algorithms. The following proposal suggests that instead of solving the problem in a unique domain, as conventionally performed, we split the problem into subdomains that overlap and solve each of them independently. We accelerate the convergence rate of the conjugate gradient solver by applying the DD methods to retrieve a better reflectivity, which is mainly visible in regions with low amplitudes. Moreover, using the pseudo-Hessian operator, the convergence of the algorithm is accelerated, suggesting that the inverse problem becomes better conditioned. Experiments using the synthetic Pluto model demonstrate that the proposed algorithm dramatically reduces the required number of iterations while providing a considerable enhancement in the image resolution and better continuity of poorly illuminated events.

2019 ◽  
Author(s):  
W. Dai ◽  
Z. Xu ◽  
X. Cheng ◽  
K. Jiao ◽  
D. Vigh

2019 ◽  
Vol 17 (1) ◽  
pp. 148-159 ◽  
Author(s):  
Song Guo ◽  
Huazhong Wang

Abstract Assuming that an accurate background velocity is obtained, least-squares migration (LSM) can be used to estimate underground reflectivity. LSM can be implemented in either the data domain or image domain. The data domain LSM (DDLSM) is not very practical because of its huge computational cost and slow convergence rate. The image domain LSM (IDLSM) might be a flexible alternative if estimating the Hessian matrix using a cheap and accurate approach. It has practical potential to analyse convenient Hessian approximation methods because the Hessian matrix is too huge to compute and save. In this paper, the Hessian matrix is approximated with non-stationary matching filters. The filters are calculated to match the conventional migration image to the demigration/remigration image. The two images are linked by the Hessian matrix. An image deblurring problem is solved with the estimated filters for the IDLSM result. The combined sparse and total variation regularisations are used to produce accurate and reasonable inversion results. The numerical experiments based on part of Sigsbee model, Marmousi model and a 2D field data set illustrate that the non-stationary matching filters can give a good approximation for the Hessian matrix, and the results of the image deblurring problem with combined regularisations can provide high-resolution and true-amplitude reflectivity estimations.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. S261-S270 ◽  
Author(s):  
Daniel Rocha ◽  
Paul Sava ◽  
Antoine Guitton

We have developed a least-squares reverse time migration (LSRTM) method that uses an energy-based imaging condition to obtain faster convergence rates when compared with similar methods based on conventional imaging conditions. To achieve our goal, we also define a linearized modeling operator that is the proper adjoint of the energy migration operator. Our modeling and migration operators use spatial and temporal derivatives that attenuate imaging artifacts and deliver a better representation of the reflectivity and scattered wavefields. We applied the method to two Gulf of Mexico field data sets: a 2D towed-streamer benchmark data set and a 3D ocean-bottom node data set. We found LSRTM resolution improvement relative to RTM images, as well as the superior convergence rate obtained by the linearized modeling and migration operators based on the energy norm, coupled with inversion preconditioning using image-domain nonstationary matching filters.


2016 ◽  
Vol 35 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Robin P. Fletcher ◽  
Dave Nichols ◽  
Robert Bloor ◽  
Richard T. Coates

Sign in / Sign up

Export Citation Format

Share Document