Using rock physics models to validate rock composition from multimineral log analysis

Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Liwei Cheng ◽  
Manika Prasad ◽  
Reinaldo J. Michelena ◽  
Ali Tura ◽  
Shamima Akther ◽  
...  

Multimineral log analysis is a quantitative formation evaluation tool for geological and petrophysical reservoir characterization. Rock composition can be estimated by solving equations that relate log measurements to the petrophysical endpoints of minerals and fluids. Due to errors in log data and uncertainties in petrophysical endpoints of constituents, we propose using effective medium models from rock physics as additional independent information to validate or constrain the results. In this paper, we examine the Voigt-Reuss (VR) bound model, self-consistent approximation (SCA), and differential effective medium (DEM). The VR bound model provides the first-order quality control of multimineral results. We first show a conventional carbonate reservoir study with intervals where the predicted effective medium models from multimineral results are inconsistent with the measured elastic properties. We use the VR bound model as an inequality constraint in multimineral analysis for plausible alternative solutions. SCA and DEM models provide good estimates in low porosity intervals and imply geological information for the porous intervals. Then, we show a field case of the Bakken and Three Forks formations. A linear interpolation of the VR bound model helps validate multimineral results and approximate the elastic moduli of clay. There are two major advantages to use our new method (a) rock physics effective medium models provide independent quality control of petrophysical multimineral results, and (b) multimineral information leads to realistic rock physics models.

2020 ◽  
Author(s):  
Ali Alali ◽  
Karl Stephen

<p>Identification and modeling of the carbonate tidal channels is key for finding sweet spots or areas at higher risk to water breakthroughs which have a significant impact on the development and monitoring of reservoir dynamic performance. However, such these channels cannot be easily characterize by conventional seismic attributes. It is important to decipher the complexity of carbonate tidal channel architecture with integrated multisource data and different approaches.</p><p>A step wise approach has been taken in this work. First, rock physics model was carried out to ensure that elastic properties can be applied for reservoir characterization from the seismic data. Then, post-stack seismic inversion was carried out on the high resolution of 3D seismic dataset. The seismically derived porosity estimation is undertaken using geostatistical method and multiattributes combination was used. Probabilistic neural network training technique was then performed to improve the results for thick reservoir and the result has been used for seismic conditioning of geological models. Finally, the spatial distribution of porosity volume was cautiously assessed through the comparison between input and blind wells, also validated by core data.</p><p>The analysis of rock physics displayed a high correlation between elastic properties and the porosity distribution of the Mishrif channel, three facies were observed. The final interpretation of seismically derived characterization in Mishrif channel, observed a different lateral distribution of inverted elastic properties. These features of Mishrif carbonate tidal channels could be classified into these regions: north, southwest, and east. Related a high porosity with low acoustic impedance appeared mostly in these channels which reflect a good reservoir quality grainstone channels or sholas bodies. While, outside these channels is heavily mud filled by peritidal carbonates and characterized a high acoustic impedance anomaly with low quality of porosity distribution.</p><p>The results provided a new insight into the distribution of the petrophysical properties and reservoir architecture of facies with quantification of their influence on dynamic reservoir behavior in the Mishrif channelized systems and also for similar heterogeneous carbonate reservoirs</p>


2019 ◽  
Vol 38 (5) ◽  
pp. 334-340 ◽  
Author(s):  
Fabien Allo

Granular effective medium (GEM) models rely on the physics of a random packing of spheres. Although the relative simplicity of these models contrasts with the complex texture of most grain-based sedimentary rocks, their analytical form makes them easier to apply than numerical models designed to simulate more complex rock structures. Also, unlike empirical models, they do not rely on data acquired under specific physical conditions and can therefore be used to extrapolate beyond available observations. In addition to these practical considerations, the appeal of GEM models lies in their parameterization, which is suited for a quantitative description of the rock texture. As a result, they have significantly helped promote the use of rock physics in the context of seismic exploration for hydrocarbon resources by providing geoscientists with tools to infer rock composition and microstructure from sonic velocities. Over the years, several classic GEM models have emerged to address modeling needs for different rock types such as unconsolidated, cemented, and clay-rich sandstones. We describe how these rock-physics models, pivotal links between geology and seismic data, can be combined into extended models through the introduction of a few additional parameters (matrix stiffness index, cement cohesion coefficient, contact-cement fraction, and laminated clays fraction), each associated with a compositional or textural property of the rock. A variety of real data sets are used to illustrate how these parameters expand the realm of seismic rock-physics diagnostics by increasing the versatility of the extended models and facilitating the simulation of plausible geologic variations away from the wells.


Sign in / Sign up

Export Citation Format

Share Document