Reservoir characterization using microseismic facies analysis integrated with surface seismic attributes
We have developed the concept of microseismic facies analysis, a method that facilitates partitioning of an unconventional reservoir into distinct facies units on the basis of their microseismic response along with integrated interpretation of microseismic observations with 3D seismic data. It is based upon proposed links between magnitude-frequency distributions and scaling properties of reservoirs, including the effects of mechanical bed thickness and stress heterogeneity. We evaluated the method using data from hydraulic fracture monitoring of a Late Cretaceous tight sand reservoir in central Alberta, in which microseismic facies can be correlated with surface seismic attributes (primarily principal curvature, coherence, and shape index) from a coincident 3D seismic survey. Facies zones are evident on the basis of attribute crossplots, such as maximum moment release rate versus cluster azimuth. The microseismically defined facies correlate well with principal curvature anomalies from 3D seismic data. By combining microseismic facies analysis with regional trends derived from log and core data, we delineate reservoir partitions that appear to reflect structural and depositional trends.