NONUNIFORM GRID UPSCALING METHOD FOR GEOLOGICAL MODEL OF OIL RESERVOIR: A CASE STUDY OF THE W BLOCK IN THE NORTHERN PART OF THE SONGLIAO BASIN

2021 ◽  
pp. 1-32
Author(s):  
Xuejuan Zhang ◽  
Lei Zhang ◽  
Dandan Wang ◽  
Kuo Lan ◽  
Xuesong Zhou ◽  
...  

At present, uniform upscaling division methods are routinely used to upscale geologic model grids, resulting in overly fine grids in some areas of the model. To improve computational efficiency, we have examined the effect of model upscaling with different upscaling parameters with the goal of producing a nonuniform grid with uniform accuracy. We based our nonuniform upscaling grid method on geologic characteristics including reservoir thickness, physical properties, reservoir spacing, and water flooding. Most of the logging curves of thin reservoirs are finger-like, allowing us to define the grid size according to the reservoir thickness. We use two different strategies to discretize uniform and composite reservoirs and represent reservoir thickness that exhibit bell- and funnel-shaped logging curves. Although one grid point accurately represents a uniform reservoir, we find that composite reservoirs require four or five points to accurately represent the physical properties of a composite reservoir. For the thick reservoirs (>5 m) with box- or composite-type logging curves, the physical properties inside the reservoir do not change much; therefore, we use a grid point to represent the reservoir thickness information. Using these metrics, we constructed alternative “moderate” and “efficient” vertical grid upscaling strategies. Taking the 15 sedimentary units with a total thickness of 72 m as an example, the statistical results show that the computational efficiency using our data-adaptive grid can be increased more than five times compared to the traditional uniform fine-grid method while retaining the same accuracy.

2017 ◽  
Vol 10 (5) ◽  
pp. 94 ◽  
Author(s):  
Reza Keshtkaran ◽  
Amin Habibi ◽  
Hamidreza Sharif

The purpose of this study is to extract the indices of Aesthetic preferences for visual quality of urban landscape in high-rise buildings which contribute designers to make better decisions for designing urban landscape. As the research focuses on the high-rise buildings, this study goal address the question as follows: ‘What are aesthetic preferences in high-rise buildings? How can these preferences be developed and categorized?’ To achieve this objective, the Derak district of Shiraz city was selected as a case study area using Photo grid method and then all high-rise buildings in this area were identified and analyzed. Aesthetic preferences data were evaluated by Q-SORT method with the psychophysical approach. Eventually, aesthetic factors have been presented in two main categories: 'primary and distinctive'. Findings lead to the development of APPD model which suggests that when the landscape design of a building moves toward distinctive factors, the degree of its aesthetic preferences increases.


2014 ◽  
pp. 43-58
Author(s):  
Maria Rajkiewicz ◽  
Marcin Ślączka ◽  
Jakub Czakaj
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhifeng Wang

This paper studies and analyzes a model describing the flow of contaminated brines through the porous media under severe thermal conditions caused by the radioactive contaminants. The problem is approximated based on combining the mixed finite element method with the modified method of characteristics. In order to solve the resulting algebraic nonlinear equations efficiently, a two-grid method is presented and discussed in this paper. This approach includes a small nonlinear system on a coarse grid with size H and a linear system on a fine grid with size h . It follows from error estimates that asymptotically optimal accuracy can be obtained as long as the mesh sizes satisfy H = O h 1 / 3 .


Sign in / Sign up

Export Citation Format

Share Document