pore throat
Recently Published Documents


TOTAL DOCUMENTS

374
(FIVE YEARS 180)

H-INDEX

28
(FIVE YEARS 7)

2022 ◽  
pp. 1-46
Author(s):  
Peng Li ◽  
Zhongbao Liu ◽  
He Bi ◽  
Jun Liu ◽  
Min Zheng ◽  
...  

With the development of the global shale oil and gas revolution, shale oil became an important replacement field to increase oil and gas reserves and production. The Chang 7 Member of the Yanchang Formation in the Ordos Basin was an important shale oil exploration series in China. To study the micropore-throat structure characteristics of the Chang 7 Member, we launched nuclear magnetic resonance (NMR) and high-pressure mercury injection (HPMI) experiments to analyze the pore-throat structure features of the Chang 7 reservoir, and we considered fractal theory to study the fractal characteristics. The NMR results indicated that the T2 spectral morphology of the Chang 7 reservoir could be characterized by three main patterns encompassing early and late peaks with different amplitudes: the type 1 reservoir contained mostly small pores and few large pores, and the porosities of the small and large pores range from 4.16% to 9.04% and 0.70% to 2.40%, respectively. The type 2 reservoir contained similar amounts of small and large pores, and the type 3 reservoir contained few small pores and mostly large pores, while the porosities of the small and large pores range from 1.81% to 2.74% and 3.32% to 5.64%, respectively. The pore-throat structure parameters were obviously affected by the pore size distribution, which in turn influenced the reservoir seepage characteristics of the reservoir. The micropore-throat structure of the reservoir exhibited obvious piecewise fractal characteristics and mainly included dichotomous and trilateral fractals. The type 1 reservoirs were dominated by dichotomous fractals, and these two fractal types were equally distributed in the type 2 and 3 reservoirs. The fractal dimension of the pore throats of different scales exhibited a negative correlation with the corresponding porosity, but no correlation was observed with the permeability, indicating that the size of the reservoir determined by pore throats imposed a strong controlling effect on their fractal characteristics.


2022 ◽  
Vol 933 ◽  
Author(s):  
Fanli Liu ◽  
Moran Wang

We investigate the impact of wettability distribution, pore size distribution and pore geometry on the statistical behaviour of trapping in pore-throat networks during capillary displacement. Through theoretical analyses and numerical simulations, we propose and prove that the trapping patterns, defined as the percentage and distribution of trapped elements, are determined by four dimensionless control parameters. The range of all possible trapping patterns and how the patterns are dependent on the four parameters are obtained. The results help us to understand the impact of wettability and structure on trapping behaviour in disordered media.


2021 ◽  
Author(s):  
Omar Alfarisi ◽  
Djamel Ouzzane ◽  
Mohamed Sassi ◽  
TieJun Zhang

<p>Although capillary and permeability are the two most important physical properties controlling fluid distribution and flow in nature, the interconnectivity function between them was a pressing challenge. Because knowing permeability leads to determining capillary pressure. Geodynamics (e.g., subsurface water, CO2 sequestration) and organs (e.g., plants, blood vessels) depend on capillary pressure and permeability. The first determines how far the fluid can reach, while the second determines how fast the fluid can flow in porous media. They are also vital to designing synthetic materials and micro-objects like membranes and micro-robotics. Here, we reveal the capillary and permeability intertwined behavior function. And demonstrate the unique physical connectors: pore throat size and network, linking capillary pressure and permeability. Our discovery quantifies the inverse relationship between capillary pressure and permeability for the first time, which we analytically derived and experimentally proved.</p>


2021 ◽  
Author(s):  
Omar Alfarisi ◽  
Djamel Ouzzane ◽  
Mohamed Sassi ◽  
TieJun Zhang

<p>Although capillary and permeability are the two most important physical properties controlling fluid distribution and flow in nature, the interconnectivity function between them was a pressing challenge. Because knowing permeability leads to determining capillary pressure. Geodynamics (e.g., subsurface water, CO2 sequestration) and organs (e.g., plants, blood vessels) depend on capillary pressure and permeability. The first determines how far the fluid can reach, while the second determines how fast the fluid can flow in porous media. They are also vital to designing synthetic materials and micro-objects like membranes and micro-robotics. Here, we reveal the capillary and permeability intertwined behavior function. And demonstrate the unique physical connectors: pore throat size and network, linking capillary pressure and permeability. Our discovery quantifies the inverse relationship between capillary pressure and permeability for the first time, which we analytically derived and experimentally proved.</p>


2021 ◽  
Author(s):  
Behzad Ghanbarian ◽  
Misagh Esmaeilpour ◽  
Robert Ziff ◽  
Muhammad Sahimi

2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Yingjie ◽  
Liang Wenfu ◽  
He Wang ◽  
Li Zian

In this paper, the variation of clay minerals and their influence on reservoir physical properties and residual oil before and after ASP flooding are analyzed. The results show that the total amount of clay minerals in reservoirs decreases after ASP flooding in the ultra-high-water-cut-stage reservoirs of the Naner Zone in the Saertu Oilfield, Songliao Basin. Therein, the illite content reduces, while the content of illite smectite mixed-layer and chlorite increases. The content of kaolinite varies greatly. The content of kaolinite decreases in some samples, while it increases in other samples. The clay minerals block the pore throat after ASP flooding. As a result, the pore structure coefficient and the seepage tortuosity increase, the primary intergranular pore throat shrinks, and the pore–throat coordination number decreases. Nevertheless, the dissolution of clay minerals reduces the pore–throat ratio and increases porosity and permeability. The variation of clay minerals after ASP flooding not only intensifies the reservoir heterogeneity but also affects the formation and distribution of residual oil. The residual oil of the oil–clay mixed adsorption state is a newly formed residual oil type related to clay, which accounts for 44.2% of the total residual oil reserves, so it is the main occurrence form of the oil in reservoirs after ASP flooding. Therefore, the exploitation of this type of residual oil has great significance to enhance the oil recovery in ultra-high-water-cut-stage reservoirs.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Lv Miaomiao ◽  
Song Benbiao ◽  
Tian Changbing ◽  
Mao Xianyu

AbstractA significant behavior of carbonate reservoirs is poor correlation between porosity and permeability. With the same porosity, the permeability can vary by three orders of magnitude or more. An accurate estimation of permeability for carbonate reservoir has been a challenge for many years. The aim of this study was to establish relationships between pore throat, porosity, and permeability. This study indicates that pore throat radius corresponding to a mercury saturation of 20% (R20) is the best permeability predictor for carbonates with complex porous pore networks. Quantitative analysis was made to achieve three different patterns of pore throat for 417 carbonate samples which cover all pore types of carbonate rocks. Different relationships between porosity, pore throat radius, and permeability have been identified in different patterns, which are utilized to predict more accurate permeability by different pore throat patterns.


2021 ◽  
Author(s):  
Jun Gao ◽  
Hyung T. Kwak ◽  
Marwah AlSinan

Abstract Carbonate reservoir rocks usually have complex pore systems of broad size distributions, which determine many aspects of oil exploitation, from petrophysical properties to oil/water displacements. An accurate and complete description of these pore systems remains a challenge. A single technique often gives one measurement of complicated microscopic pore space. The new techniques (i.e., micro-CT and NMR) are utilized together with conventional methods (e.g., MICP, BET) to capture a more accurate and complete picture of pore structures. MICP measures the pore throat while the NMR T2 mainly measures the pore body. Micro-CT provides a 3D image of a limited sample size. Recently, NMR DDIF (decay due to diffusion in the internal field) for direct pore body size is extended from high to low magnetic field, which overcomes many limitations in pore system characterization. This study obtains pore throat size distributions from in-situ centrifuge capillary pressure and pore body size distributions from low field DDIF measurement and verifies them with micro-CT and BET/T2 in different types of carbonate rocks. The pore throat size distribution of the conventional sample is obtained from in-situ centrifuge capillary pressure. The major features of both macro and micro pore throat size distributions are captured. Pore size distributions are directly obtained from glass beads and carbonate rocks without calibration. Combined analysis of the pore size distribution from two methods reveals the underlying causes of their different petrophysical properties. The pore throat size distribution from in-situ centrifuge capillary pressure and pore size distribution from NMR DDIF can be employed to obtain a better understanding of conventional carbonate pore systems.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8450
Author(s):  
Xiaojun Zha ◽  
Fuqiang Lai ◽  
Xuanbo Gao ◽  
Yang Gao ◽  
Nan Jiang ◽  
...  

The shale oil reservoir of the Lucaogou Formation in the Jimsar Sag has undergone tectonic movement, regional deposition and complex diagenesis processes. Therefore, various reservoir space types and complex combination patterns of pores have developed, resulting in an intricate pore throat structure. The complex pore throat structure brings great challenges to the classification and evaluation of reservoirs and the efficient development of shale oil. The methods of scanning electron microscopy, high-pressure mercury injection, low-temperature adsorption experiments and thin-slice analysis were used in this study. Mineral, petrology, pore throat structure and evolution process characteristics of the shale oil reservoir were analyzed and discussed qualitatively and quantitatively. Based on these studies, the evolution characteristics and formation mechanisms of different pore throat structures were revealed, and four progressions were made. The reservoir space of the Lucaogou Formation is mainly composed of residual intergranular pores, dissolved pores, intercrystalline pores and fractures. Four types of pore throat structures in the shale oil reservoir of the Lucaogou Formation were quantitatively characterized. Furthermore, the primary pore throat structure was controlled by a sedimentary environment. The pores and throats were reduced and blocked by compaction and cementation, which deteriorates the physical properties of the reservoirs. However, the dissolution of early carbonate, feldspar and tuffaceous minerals and a small amount of carbonate cements by organic acids are the key factors to improve the pore throat structure of the reservoirs. The genetic evolution model of pore throat structures in the shale oil reservoir of the Lucaogou Formation are divided into two types. The large-pore medium-fine throat and medium-pore medium-throat reservoirs are mainly located in the delta front-shallow lake facies and are characterized by the diagenetic assemblage types of weak compaction–weak carbonate cementation–strong dissolution, early medium compaction–medium calcite and dolomite cementation–weak dissolution. The medium-pore fine throats and fine-pore fine throats are mainly developed in shallow lakes and semi-deep lakes. They are characterized by the diagenetic assemblage type of strong compaction–strong calcite cementation–weak dissolution diagenesis. This study provides a comprehensive understanding of the pore throat structure and the genetic mechanism of a complex shale oil reservoir and benefits the exploration and development of shale oil.


Sign in / Sign up

Export Citation Format

Share Document