Rock physics modeling to monitor movement of CO2in Sleipner gas field, North Sea: An ideal CCS field

2014 ◽  
Author(s):  
Ranjana Ghosh* ◽  
Nimisha Vedanti ◽  
Reetam Biswas ◽  
Mrinal K. Sen
Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. MR121-MR132 ◽  
Author(s):  
Uri Wollner ◽  
Yunfei Yang ◽  
Jack P. Dvorkin

Seismic reflections depend on the contrasts of the elastic properties of the subsurface and their 3D geometry. As a result, interpreting seismic data for petrophysical rock properties requires a theoretical rock-physics model that links the seismic response to a rock’s velocity and density. Such a model is based on controlled experiments in which the petrophysical and elastic rock properties are measured on the same samples, such as in the wellbore. Using data from three wells drilled through a clastic offshore gas reservoir, we establish a theoretical rock-physics model that quantitatively explains these data. The modeling is based on the assumption that only three minerals are present: quartz, clay, and feldspar. To have a single rock-physics transform to quantify the well data in the entire intervals under examination in all three wells, we introduced field-specific elastic moduli for the clay. We then used the model to correct the measured shear-wave velocity because it appeared to be unreasonably low. The resulting model-derived Poisson’s ratio is much smaller than the measured ratio, especially in the reservoir. The associated synthetic amplitude variation with offset response appears to be consistent with the recorded seismic angle stacks. We have shown how rock-physics modeling not only helps us to correct the well data, but also allows us to go beyond the settings represented in the wells and quantify the seismic signatures of rock properties and conditions varying in a wider range using forward seismic modeling.


Sign in / Sign up

Export Citation Format

Share Document