Integrating statistical rock physics and pressure and thermal history modeling to map reservoir lithofacies in the deepwater Gulf of Mexico

Author(s):  
Wisam AlKawai ◽  
Tapan Mukerji ◽  
Allegra Scheirer ◽  
Stephan Graham
Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. IM15-IM28 ◽  
Author(s):  
Wisam H. AlKawai ◽  
Tapan Mukerji ◽  
Allegra Hosford Scheirer ◽  
Stephan A. Graham

We have developed an approach integrating statistical rock physics with pressure and thermal history modeling for quantitative seismic interpretation (QSI). Extending the training data for lithofacies classification and deriving distributions for scenarios not available in the original training require knowledge about geologic processes affecting the elastic properties in the subsurface. We model pressure and thermal history and corresponding smectite to illite diagenesis with a basin model across Thunder Horse minibasin in the Gulf of Mexico. By comparing the mapped lithofacies with and without basin-modeling extrapolations against the results of a reference workflow, we found the value of integrating basin modeling results and statistical rock physics with QSI workflows. The reference workflow uses all available data from two wells in the QSI. The first workflow performs the same lithofacies classification with data from only a single well and does not account for spatial trends away from the well. In the second workflow, we use data from only a single well, the same well as in the first workflow, and bring in extrapolation from the basin and petroleum system modeling at the location of the second well. Results for the first workflow indicate significant differences with the reference workflow in the training data, the quality of the inverted impedance volumes, and the classified reservoir lithofacies. In the second workflow, the guided extrapolation of the training data accounts for spatial trends away from the well and the quality of the impedance inversion significantly improves. The predicted lithofacies map in this scenario shows only minor differences from the reference workflow, and the posterior probabilities of lithofacies show less uncertainty compared with the first workflow. The superiority of the second workflow demonstrates the added value of the integration workflow to QSI in cases of spatially limited well control.


Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A165-75A176 ◽  
Author(s):  
Miguel Bosch ◽  
Tapan Mukerji ◽  
Ezequiel F. Gonzalez

There are various approaches for quantitative estimation of reservoir properties from seismic inversion. A general Bayesian formulation for the inverse problem can be implemented in two different work flows. In the sequential approach, first seismic data are inverted, deterministically or stochastically, into elastic properties; then rock-physics models transform those elastic properties to the reservoir property of interest. The joint or simultaneous work flow accounts for the elastic parameters and the reservoir properties, often in a Bayesian formulation, guaranteeing consistency between the elastic and reservoir properties. Rock physics plays the important role of linking elastic parameters such as impedances and velocities to reservoir properties of interest such as lithologies, porosity, and pore fluids. Geostatistical methods help add constraints of spatial correlation, conditioning to different kinds of data and incorporating subseismic scales of heterogeneities.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. O21-O37 ◽  
Author(s):  
Dario Grana ◽  
Ernesto Della Rossa

A joint estimation of petrophysical properties is proposed that combines statistical rock physics and Bayesian seismic inversion. Because elastic attributes are correlated with petrophysical variables (effective porosity, clay content, and water saturation) and this physical link is associated with uncertainties, the petrophysical-properties estimation from seismic data can be seen as a Bayesian inversion problem. The purpose of this work was to develop a strategy for estimating the probability distributions of petrophysical parameters and litho-fluid classes from seismics. Estimation of reservoir properties and the associated uncertainty was performed in three steps: linearized seismic inversion to estimate the probabilities of elastic parameters, probabilistic upscaling to include the scale-changes effect, and petrophysical inversion to estimate the probabilities of petrophysical variables andlitho-fluid classes. Rock-physics equations provide the linkbetween reservoir properties and velocities, and linearized seismic modeling connects velocities and density to seismic amplitude. A full Bayesian approach was adopted to propagate uncertainty from seismics to petrophysics in an integrated framework that takes into account different sources of uncertainty: heterogeneity of the real data, approximation of physical models, measurement errors, and scale changes. The method has been tested, as a feasibility step, on real well data and synthetic seismic data to show reliable propagation of the uncertainty through the three different steps and to compare two statistical approaches: parametric and nonparametric. Application to a real reservoir study (including data from two wells and partially stacked seismic volumes) has provided as a main result the probability densities of petrophysical properties and litho-fluid classes. It demonstrated the applicability of the proposed inversion method.


Sign in / Sign up

Export Citation Format

Share Document