Central-difference time-lapse 4D seismic full waveform inversion

Author(s):  
Wei Zhou ◽  
David Lumley
Geophysics ◽  
2021 ◽  
pp. 1-60
Author(s):  
Wei Zhou ◽  
David Lumley

Full waveform inversion (FWI) can be applied to time-lapse (4D) seismic data for subsurface reservoir monitoring. However, non-repeatability (NR) issues can contaminate the data and cause artifacts in the estimation of 4D rock and fluid property changes. Therefore, evaluating and studying the NR effects on the 4D data and FWI results can help, for instance, discriminate inversion artifacts from true changes, guide seismic survey design and processing workflow. Using realistic reservoir models, data and field measurements of NR, we show the effects of NR source-receiver position and seawater velocity changes on the data and the 4D FWI results. We find that ignoring these NR effects in the inversion can cause strong artifacts in the estimated velocity change models, and thus should be addressed before or during inversion. The NR source-receiver positioning issue can be addressed by 4D FWI successfully, whereas the NR water velocity issue requires measurements or estimations of water velocities. Furthermore, we compare the accuracy and robustness of the parallel, double-difference and central-difference 4D FWI methods to realistic NR ocean-bottom node data in a quantitative way. Parallel 4D FWI fails to capture geomechanical changes and also overestimates the aquifer layer changes with NR data. Double-difference 4D FWI is capable of recovering the geomechanical changes, but is also sensitive to NR noises, generating more artifacts in the overburden. By averaging the forward and reverse bootstrap 4D estimates, central-difference 4D FWI is more robust to NR noises, and also produces the most accurate 4D estimates.


Geophysics ◽  
2020 ◽  
pp. 1-42
Author(s):  
Wei Zhou ◽  
David Lumley

Repeated seismic surveys contain valuable information regarding time-lapse (4D) changes in the subsurface. Full waveform inversion (FWI) of seismic data can provide high-resolution estimates of 4D change. We propose a new time-domain 2D acoustic time-lapse FWI method based on the central-difference scheme with higher-order mathematical accuracy and reasonable computational cost. The method is rigorously tested on the SEAM 4D time-lapse model and OBN data set. High-resolution 4D velocity estimates are obtained, which show strong ~25% velocity increases in a 75 m-thick gas layer, as well as weaker (5%) changes due to geomechanical effects, the latter of which are poorly recovered by the conventional parallel 4D FWI method. We also perform the bootstrap 4D FWI method and the result is contaminated by strong artifacts in the underburden, whereas the proposed central-difference method has fewer underburden artifacts allowing more reliable interpretations. In this realistic case study, acoustic FWI erroneously overfits the elastic scattered waves, and cannot fit the strong elastic 4D coda waves at all. The results show that the proposed central-difference 4D FWI method within the acoustic approximation may be a practical solution for time-lapse seismic velocity inversion.


2021 ◽  
Vol 110 ◽  
pp. 103417
Author(s):  
Dong Li ◽  
Suping Peng ◽  
Xingguo Huang ◽  
Yinling Guo ◽  
Yongxu Lu ◽  
...  

2017 ◽  
Author(s):  
Musa Maharramov ◽  
Ganglin Chen ◽  
Partha S. Routh ◽  
Anatoly I. Baumstein ◽  
Sunwoong Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document