A robust 3D anisotropic full-waveform inversion strategy for complex salt provinces

Author(s):  
Junxiao Li ◽  
Herurisa Rusmanugroho ◽  
Farah Syazana Dzulkefli ◽  
Mahesh Kalita
2019 ◽  
Vol 38 (3) ◽  
pp. 204-213 ◽  
Author(s):  
Ping Wang ◽  
Zhigang Zhang ◽  
Jiawei Mei ◽  
Feng Lin ◽  
Rongxin Huang

Full-waveform inversion (FWI), proposed by Lailly and Tarantola in the 1980s, is considered to be the most promising data-driven tool for automatically building velocity models. Many successful examples have been reported using FWI to update shallow sediments, gas pockets, and mud volcanoes. However, successful applications of FWI to update salt structures had almost only been seen on synthetic data until recent progress at the Atlantis Field in the Gulf of Mexico. We revisited some aspects of FWI algorithms to minimize cycle-skipping and amplitude discrepancy issues and derived an FWI algorithm that is able to build complex salt velocity models. We applied this algorithm to a variety of data sets, including wide-azimuth and full-azimuth (FAZ) streamer data as well as ocean-bottom-node data, with different geologic settings in order to demonstrate the effectiveness of the method for salt velocity updates and to examine some fundamentals of the salt problem. We observed that, in multiple cases, salt velocity models from this FWI algorithm produced subsalt images of superior quality. We demonstrate with one FAZ streamer data example in Keathley Canyon that we do not necessarily need very high frequency in FWI for subsalt imaging purposes. Based on this observation, we envision that sparse node for velocity acquisition may provide appropriate data to handle large and complex salt bodies with FWI. We believe the combination of advanced FWI algorithms and appropriate data acquisition will bring a step change to subsalt imaging.


Geophysics ◽  
2022 ◽  
pp. 1-51
Author(s):  
Peter Lanzarone ◽  
Xukai Shen ◽  
Andrew Brenders ◽  
Ganyuan Xia ◽  
Joe Dellinger ◽  
...  

We demonstrated the application of full-waveform inversion (FWI) guided velocity model building to an extended wide-azimuth towed streamer (EWATS) seismic data set in the Gulf of Mexico. Field data were collected over a historically challenging imaging area, colloquially called the “grunge zone” due to the formation of a compressional allosuture emplaced between two colliding salt sheets. These data had a poor subsalt image below the suture with conventional narrow-azimuth data. Additional geologic complexities were observed including high-velocity carbonate carapace near the top of salt and multiple intrasalt sedimentary inclusions. As such, improved seismic imaging was required to plan and execute wells targeting subsalt strata. Significant improvements to the velocity model and subsalt image were evident with wide-azimuth towed streamer and later EWATS data using conventional top-down velocity model building approaches. Then, high-impact improvements were made using EWATS data with an FWI velocity model building workflow; this study represented an early successful application of FWI used to update salt body geometries from streamer seismic data, in which many past applications were limited to improving sedimentary velocities. Later petrophysical data verified the new FWI-derived model, which had significantly increased confidence in the structural and stratigraphic interpretation of subsalt reservoir systems below the grunge zone.


2015 ◽  
Vol 6 (2) ◽  
pp. 5-16 ◽  
Author(s):  
Sergio Alberto Abreo Carrillo ◽  
Ana B. Ramirez ◽  
Oscar Reyes ◽  
David Leonardo Abreo-Carrillo ◽  
Herling González Alvarez

Sign in / Sign up

Export Citation Format

Share Document