cavity detection
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 32)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
João Victor da Silva Guerra ◽  
Helder Veras Ribeiro-Filho ◽  
Gabriel Ernesto Jara ◽  
Leandro Oliveira Bortot ◽  
José Geraldo de Carvalho Pereira ◽  
...  

Abstract Background Biomolecular interactions that modulate biological processes occur mainly in cavities throughout the surface of biomolecular structures. In the data science era, structural biology has benefited from the increasing availability of biostructural data due to advances in structural determination and computational methods. In this scenario, data-intensive cavity analysis demands efficient scripting routines built on easily manipulated data structures. To fulfill this need, we developed pyKVFinder, a Python package to detect and characterize cavities in biomolecular structures for data science and automated pipelines. Results pyKVFinder efficiently detects cavities in biomolecular structures and computes their volume, area, depth and hydropathy, storing these cavity properties in NumPy arrays. Benefited from Python ecosystem interoperability and data structures, pyKVFinder can be integrated with third-party scientific packages and libraries for mathematical calculations, machine learning and 3D visualization in automated workflows. As proof of pyKVFinder’s capabilities, we successfully identified and compared ADRP substrate-binding site of SARS-CoV-2 and a set of homologous proteins with pyKVFinder, showing its integrability with data science packages such as matplotlib, NGL Viewer, SciPy and Jupyter notebook. Conclusions We introduce an efficient, highly versatile and easily integrable software for detecting and characterizing biomolecular cavities in data science applications and automated protocols. pyKVFinder facilitates biostructural data analysis with scripting routines in the Python ecosystem and can be building blocks for data science and drug design applications.


2021 ◽  
pp. 141-152
Author(s):  
Apurva Sonavane ◽  
Rachna Kohar
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Cimmino ◽  
F. Ambrosino ◽  
A. Anastasio ◽  
M. D’Errico ◽  
V. Masone ◽  
...  

AbstractMuon radiography is a methodology which enables measuring the mass distribution within large objects. It exploits the abundant flux of cosmic muons and uses detectors with different technologies depending on the application. As the sensitive surface and geometric acceptance are two fundamental parameters for increasing the collection of muons, the optimization of the detectors is very significant. Here we show a potentially innovative detector of size and shape suitable to be inserted inside a borehole, that optimizes the sensitive area and maximizes the angular acceptance thanks to its cylindrical geometry obtained using plastic arc-shaped scintillators. Good spatial resolution is obtained with a reasonable number of channels. The dimensions of the detector make it ideal for use in 25 cm diameter wells. Detailed simulations based on Monte Carlo methods show great cavity detection capability. The detector has been tested in the laboratory, achieving overall excellent performance.


2021 ◽  
pp. 147592172110285
Author(s):  
Lin Chen ◽  
Haibei Xiong ◽  
Xiaohan Sang ◽  
Cheng Yuan ◽  
Xiuquan Li ◽  
...  

Timber structures have been a dominant form of construction throughout most of history and continued to serve as a widely used staple of civil infrastructure in the modern era. As a natural material, wood is prone to termite damages, which often cause internal cavities for timber structures. Since internal cavities are invisible and greatly weaken structural load-bearing capacity, an effective method to timber internal cavity detection is of great importance to ensure structural safety. This article proposes an innovative deep neural network (DNN)–based approach for internal cavity detection of timber columns using percussion sound. The influence mechanism of percussion sound with the volume change of internal cavity was studied through theoretical and numerical analysis. A series of percussion tests on timber column specimens with different cavity volumes and environmental variations were conducted to validate the feasibility of the proposed DNN-based approach. Experimental results show high accuracy and generality for cavity severity identification regardless of percussion location, column section shape, and environmental effects, implying great potentials of the proposed approach as a fast tool for determining internal cavity of timber structures in field applications.


2021 ◽  
Author(s):  
Jean-Rémy Marchand ◽  
Bernard Pirard ◽  
Peter Ertl ◽  
Finton Sirockin

<p></p><p>The accurate description of protein binding sites is essential to the determination of similarity and the application of machine learning methods to relate the binding sites to observed functions. This work describes CAVIAR, a new open source tool for generating descriptors for binding sites, using protein structures in PDB and mmCIF format as well as trajectory frames from molecular dynamics simulations as input. The applicability of CAVIAR descriptors is showcased by computing machine learning predictions of binding site ligandability. The method can also automatically assign subcavities, even in the absence of a bound ligand. The defined subpockets mimic the empirical definitions used in medicinal chemistry projects. It is shown that the experimental binding affinity scales relatively well with the number of subcavities filled by the ligand, with compounds binding to more than three subcavities having nanomolar or better affinities to the target. The CAVIAR descriptors and methods can be used in any machine learning-based investigations of problems involving binding sites, from protein engineering to hit identification. The full software code is available on GitHub and a conda package is hosted on Anaconda cloud.</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document