A comparison of random and periodic marine simultaneous-source encoding

2018 ◽  
Vol 37 (6) ◽  
pp. 471a1-471a11 ◽  
Author(s):  
David F. Halliday ◽  
Ian Moore

Separation algorithms for marine simultaneous-source data generally require encoded sources. Proposed encoding schemes include random time delays (time dithers), periodic time sequences (such as those referred to as seismic apparition), and periodic phase sequences (for sources with fully controlled phase like a marine vibrator). At a given frequency, time dithers spread energy at a given wavenumber over all wavenumbers, phase sequences shift the energy by a fixed wavenumber (independent of frequency), and time sequences split energy over multiple wavenumbers in a frequency-dependent way. The way the encoding scheme distributes energy in the wavenumber domain is important because separation algorithms generally assume that, in the absence of encoding, all energy falls into the signal cone. Time dithering allows separation by inversion. At low frequencies, the inverse problem is overdetermined and easily solved. At higher frequencies, sparse inversion works well, provided the data exhibit a sufficiently sparse representation (consistent with compressive sensing theory). Phase sequencing naturally separates the sources in the wavenumber domain at low frequencies. At higher frequencies, ambiguities must be resolved using assumptions such as limited dispersion and limited complexity. Time sequencing allows a simple separation at low frequencies based on a scaling and subtraction process in the wavenumber domain. However, the scaling becomes unstable near notch frequencies, including DC. At higher frequencies, a similar problem to that for phase sequencing must be solved. The encoding schemes, therefore, have similar overall properties and require similar assumptions, but differ in some potentially important details. Phase sequencing is clearly only applicable to phase-controllable sources, and the different encoding schemes have other implications for data acquisition, for example, with respect to operational complexity, efficiency, spatial sampling, and tolerance to errors.

Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. A9-A12 ◽  
Author(s):  
Kees Wapenaar ◽  
Joost van der Neut ◽  
Jan Thorbecke

Deblending of simultaneous-source data is usually considered to be an underdetermined inverse problem, which can be solved by an iterative procedure, assuming additional constraints like sparsity and coherency. By exploiting the fact that seismic data are spatially band-limited, deblending of densely sampled sources can be carried out as a direct inversion process without imposing these constraints. We applied the method with numerically modeled data and it suppressed the crosstalk well, when the blended data consisted of responses to adjacent, densely sampled sources.


Geophysics ◽  
2021 ◽  
pp. 1-56
Author(s):  
Breno Bahia ◽  
Rongzhi Lin ◽  
Mauricio Sacchi

Denoisers can help solve inverse problems via a recently proposed framework known as regularization by denoising (RED). The RED approach defines the regularization term of the inverse problem via explicit denoising engines. Simultaneous source separation techniques, being themselves a combination of inversion and denoising methods, provide a formidable field to explore RED. We investigate the applicability of RED to simultaneous-source data processing and introduce a deblending algorithm named REDeblending (RDB). The formulation permits developing deblending algorithms where the user can select any denoising engine that satisfies RED conditions. Two popular denoisers are tested, but the method is not limited to them: frequency-wavenumber thresholding and singular spectrum analysis. We offer numerical blended data examples to showcase the performance of RDB via numerical experiments.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. V1-V11 ◽  
Author(s):  
Amr Ibrahim ◽  
Mauricio D. Sacchi

We adopted the robust Radon transform to eliminate erratic incoherent noise that arises in common receiver gathers when simultaneous source data are acquired. The proposed robust Radon transform was posed as an inverse problem using an [Formula: see text] misfit that is not sensitive to erratic noise. The latter permitted us to design Radon algorithms that are capable of eliminating incoherent noise in common receiver gathers. We also compared nonrobust and robust Radon transforms that are implemented via a quadratic ([Formula: see text]) or a sparse ([Formula: see text]) penalty term in the cost function. The results demonstrated the importance of incorporating a robust misfit functional in the Radon transform to cope with simultaneous source interferences. Synthetic and real data examples proved that the robust Radon transform produces more accurate data estimates than least-squares and sparse Radon transforms.


1993 ◽  
Vol 83 (6) ◽  
pp. 1799-1812
Author(s):  
Yefim Gitterman ◽  
Torild van Eck

Abstract In northern Israel, quarry blasts and microearthquakes occur in a region with complicated tectonics. Therefore correct event identification, preferably based on a simple method that can be applied on a routine basis, is essential for accurate and detailed seismotectonic studies. Spectral analysis of quarry blasts and microearthquakes recorded at local distances (5 < Δ < 2000 km) by stations of the Israel Seismograph Network revealed spectral characteristics in the frequency range less than 12.5 Hz that can be used routinely for event identification. Most quarry blasts in northern Israel are ripple-fired, open pit blasts, consequently we chose an event discrimination method based on the recognition of ripple-firing patterns in the signal. A simple model for ripple firing parameters, based on interference theory of linear systems and including random effects, predicts spectral minima at low frequencies identical for different seismic phases. We compared the spectra of complete seismogram signals of 52 events recorded by the ISN at different distances and azimuths, including both microearthquakes and quarry blasts in a selected region of northern Israel. Consistent spectral modulation was found in a band from about 2 to 8 Hz for 18 of 21 reliably identified, i.e., reported, quarry blasts with time delays of 20 to 40 msec. The spectral minima frequencies correspond to those predicted by the theory.


2018 ◽  
Vol 151 ◽  
pp. 274-289 ◽  
Author(s):  
Shaohuan Zu ◽  
Hui Zhou ◽  
Weijian Mao ◽  
Fei Gong ◽  
Weilin Huang

Sign in / Sign up

Export Citation Format

Share Document