Suprasalt model building using full-waveform inversion

2019 ◽  
Vol 38 (3) ◽  
pp. 214-219 ◽  
Author(s):  
Dhananjay Tiwari ◽  
Jian Mao ◽  
James Sheng

The application of full-waveform inversion (FWI) to bring high resolution to the velocity model is becoming a standard approach in the velocity model-building workflow. Diving wave FWI in conjunction with reflection FWI (RFWI) has been widely used in the Gulf of Mexico (GOM) to optimize the suprasalt model. Accuracy of a velocity model from tomography is dependent on residual moveout (RMO) picking accuracy. In a good signal-to-noise ratio area, the confidence of RMO picking is high. But gathers in areas affected by gas exhibit poor event continuity, which makes it difficult to get accurate RMO picks. In such a geologic regime, FWI can improve the velocity model and therefore the final image quality. There are two main components of a velocity model from the GOM area: the first is the sediment, and the second is salt geometry. In the beginning of the model-building cycle, it is most likely that salt geometry is not accurately defined. This inaccuracy leads to a big mismatch between synthetic and observed data for both diving wave FWI and RFWI. One way to handle this situation is to start with the salt model and iteratively adjust the salt interpretation as FWI model building progresses from lower to higher frequencies. Another approach could be eliminating the salt-related energy from the input and then using the sediment-only model for FWI. We are proposing a desalt approach in which we try to eliminate or reduce the salt-related energy from the input data and then use a sediment-only velocity model as a starting model for the entire suprasalt FWI workflow. We will present a case study in which, by adapting the desalt workflow, we could manage to do more FWI iterations by eliminating salt interpretation.

2011 ◽  
Author(s):  
S. Jerry Kapoor ◽  
Denes Vigh ◽  
Timothy John Bunting

2019 ◽  
Vol 7 (2) ◽  
pp. SB43-SB52 ◽  
Author(s):  
Adriano Gomes ◽  
Joe Peterson ◽  
Serife Bitlis ◽  
Chengliang Fan ◽  
Robert Buehring

Inverting for salt geometry using full-waveform inversion (FWI) is a challenging task, mostly due to the lack of extremely low-frequency signal in the seismic data, the limited penetration depth of diving waves using typical acquisition offsets, and the difficulty in correctly modeling the amplitude (and kinematics) of reflection events associated with the salt boundary. However, recent advances in reflection FWI (RFWI) have allowed it to use deep reflection data, beyond the diving-wave limit, by extracting the tomographic term of the FWI reflection update, the so-called rabbit ears. Though lacking the resolution to fully resolve salt geometry, we can use RFWI updates as a guide for refinements in the salt interpretation, adding a partially data-driven element to salt velocity model building. In addition, we can use RFWI to update sediment velocities in complex regions surrounding salt, where ray-based approaches typically struggle. In reality, separating the effects of sediment velocity errors from salt geometry errors is not straightforward in many locations. Therefore, iterations of RFWI plus salt scenario tests may be necessary. Although it is still not the fully automatic method that has been envisioned for FWI, this combined approach can bring significant improvement to the subsalt image, as we examine on field data examples from the Gulf of Mexico.


Sign in / Sign up

Export Citation Format

Share Document