Real-time hydraulic fracture monitoring and wellbore characterization with distributed acoustic sensing of pumping noise

2020 ◽  
Vol 39 (11) ◽  
pp. 785-792
Author(s):  
Igor Borodin ◽  
Arkady Segal

The strong and regular acoustic signal provided by working pumps spreads along a well based on wellbore geometrical and physical attributes. This signal can be used to devise well properties through the interpretation of distributed acoustic data collected along a zone of interest. Any well feature that is an irregularity of the well scheme, such as tubing expansion, fluid-to-fluid interface, or an adjacent hydraulic fracture, porous reservoir, or annular compartment, can be characterized this way. Every pump generates a plurality of harmonic frequencies; thus, there are plenty of data for inversion for feature parameters. We describe a quantitative inversion workflow and give synthetic examples of hydraulic fracture monitoring and hydraulic port open/closure condition monitoring. We also stress that interference of the pump signal by the flow noise signal should be accounted for in distributed acoustic sensing interpretation.


2021 ◽  
Author(s):  
Yinghui Wu ◽  
Robert Hull ◽  
Andrew Tucker ◽  
Craig Rice ◽  
Peter Richter ◽  
...  

Abstract Distributed fiber-optic sensing (DFOS) has been utilized in unconventional reservoirs for hydraulic fracture efficiency diagnostics for many years. Downhole fiber cables can be permanently installed external to the casing to monitor and measure the uniformity and efficiency of individual clusters and stages during the completion in the near-field wellbore environment. Ideally, a second fiber or multiple fibers can be deployed in offset well(s) to monitor and characterize fracture geometries recorded by fracture-driven interactions or frac-hits in the far-field. Fracture opening and closing, stress shadow creation and relaxation, along with stage isolation can be clearly identified. Most importantly, fracture propagation from the near to far-field can be better understood and correlated. With our current technology, we can deploy cost effective retrievable fibers to record these far-field data. Our objective here is to highlight key data that can be gathered with multiple fibers in a carefully planned well-spacing study and to evaluate and understand the correspondence between far-field and near-field Distributed Acoustic Sensing (DAS) data. In this paper, we present a case study of three adjacent horizontal wells equipped with fiber in the Permian basin. We can correlate the near-field fluid allocation across a stage down to the cluster level to far-field fracture driven interactions (FDIs) with their frac-hit strain intensity. With multiple fibers we can evaluate fracture geometry, the propagation of the hydraulic fractures, changes in the deformation related to completion designs, fracture complexity characterization and then integrate the results with other data to better understand the geomechanical processes between wells. Novel frac-hit corridor (FHC) is introduced to evaluate stage isolation, azimuth, and frac-hit intensity (FHI), which is measured in far-field. Frac design can be evaluated with the correlation from near-field allocation to far-field FHC and FHI. By analyzing multiple treatment and monitor wells, the correspondence can be further calibrated and examined. We observe the far-field FHC and FHI are directly related to the activities of near-field clusters and stages. A leaking plug may directly result in FHC overlapping, gaps and variations in FHI, which also can be correlated to cluster uniformity. A near-far field correspondence can be established to evaluate FHC and FHI behaviors. By utilizing various completion designs and related measurements (e.g. Distributed Temperature Sensing (DTS), gauges, microseismic etc.), optimization can be performed to change the frac design based on far-field and near-field DFOS data based on the Decision Tree Method (DTM). In summary, hydraulic fracture propagation can be better characterized, measured, and understood by deploying multiple fibers across a lease. The correspondence between the far-field measured FHC and FHI can be utilized for completion evaluation and diagnostics. As the observed strain is directly measured, completion engineering and geoscience teams can confidently optimize their understanding of the fracture designs in real-time.



Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. D11-D23 ◽  
Author(s):  
Martin Karrenbach ◽  
Steve Cole ◽  
Andrew Ridge ◽  
Kevin Boone ◽  
Dan Kahn ◽  
...  

Hydraulic fracturing operations in unconventional reservoirs are typically monitored using geophones located either at the surface or in the adjacent wellbores. A new approach to record hydraulic stimulations uses fiber-optic distributed acoustic sensing (DAS). A fiber-optic cable was installed in a treatment well in the Meramec formation to monitor the hydraulic fracture stimulation of an unconventional reservoir. A variety of physical effects, such as temperature, strain, and microseismicity are measured and correlated with the treatment program during hydraulic fracturing of the well containing the fiber and also an adjacent well. The analysis of this DAS data set demonstrates that current fiber-optic technology provides enough sensitivity to detect a considerable number of microseismic events and that these events can be integrated with temperature and strain measurements for comprehensive hydraulic fracture monitoring.



Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. KS139-KS147
Author(s):  
A. F. Baird ◽  
A. L. Stork ◽  
S. A. Horne ◽  
G. Naldrett ◽  
J.-M. Kendall ◽  
...  

Fiber-optic distributed acoustic sensing (DAS) cables are now used to monitor microseismicity during hydraulic-fracture stimulations of unconventional gas reservoirs. Unlike geophone arrays, DAS systems are sensitive to uniaxial strain or strain rate along the fiber direction and thus provide a 1C recording, which makes identifying the directionality and polarization of incoming waves difficult. Using synthetic examples, we have shown some fundamental characteristics of microseismic recordings on DAS systems for purposes of hydraulic fracture monitoring in a horizontal well in anisotropic (vertical transverse isotropy [VTI]) shales. We determine that SH arrivals dominate the recorded signals because their polarization is aligned along the horizontal cable at the near offset, although SV will typically dominate for events directly above or below the array. The amplitude of coherent shear-wave (S-wave) arrivals along the cable exhibits a characteristic pattern with bimodal peaks, the width of which relates to the distance of the event from the cable. Furthermore, we find that S-wave splitting recorded on DAS systems can be used to infer the inclination of the incoming waves, overcoming a current limitation of event locations that have constrained events to lie in a horizontal plane. Low-amplitude SV arrivals suggest an event depth similar to that of the DAS cable. Conversely, steep arrivals produce higher amplitude SV-waves, with S-wave splitting increasing with offset along the cable. Finally, we determine how polarity reversals observed in the P and SH phases can be used to provide strong constraints on the source mechanisms.



2014 ◽  
Author(s):  
K. Boone ◽  
A. Ridge ◽  
R. Crickmore ◽  
D. Onen


2020 ◽  
Vol 126 (1) ◽  
Author(s):  
A. Lellouch ◽  
R. Schultz ◽  
N.J. Lindsey ◽  
B.L. Biondi ◽  
W.L. Ellsworth


2021 ◽  
Author(s):  
Sara Klaasen ◽  
Patrick Paitz ◽  
Jan Dettmer ◽  
Andreas Fichtner

<p>We present one of the first applications of Distributed Acoustic Sensing (DAS) in a volcanic environment. The goals are twofold: First, we want to examine the feasibility of DAS in such a remote and extreme environment, and second, we search for active volcanic signals of Mount Meager in British Columbia (Canada). </p><p>The Mount Meager massif is an active volcanic complex that is estimated to have the largest geothermal potential in Canada and caused its largest recorded landslide in 2010. We installed a 3-km long fibre-optic cable at 2000 m elevation that crosses the ridge of Mount Meager and traverses the uppermost part of a glacier, yielding continuous measurements from 19 September to 17 October 2019.</p><p>We identify ~30 low-frequency (0.01-1 Hz) and 3000 high-frequency (5-45 Hz) events. The low-frequency events are not correlated with microseismic ocean or atmospheric noise sources and volcanic tremor remains a plausible origin. The frequency-power distribution of the high-frequency events indicates a natural origin, and beamforming on these events reveals distinct event clusters, predominantly in the direction of the main peaks of the volcanic complex. Numerical examples show that we can apply conventional beamforming to the data, and that the results are improved by taking the signal-to-noise ratio of individual channels into account.</p><p>The increased data quantity of DAS can outweigh the limitations due to the lower quality of individual channels in these hazardous and remote environments. We conclude that DAS is a promising tool in this setting that warrants further development.</p>



Sign in / Sign up

Export Citation Format

Share Document