temperature strain
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 91)

H-INDEX

33
(FIVE YEARS 7)

Author(s):  
Bo Pu ◽  
Ping Song ◽  
Wen-bin Li ◽  
Wen-jin Yao ◽  
Xiao-ming Wang

Abstract This paper presents a study on plastic deformation behavior of Cu–50Ta alloy at temperatures of 286–473 K and strain-rate of 0.01–6200 s−1. The effects of temperature, strain-rate, and strain on the yield strength, flow stress, and strain-rate sensitivity coefficient were determined. A phenomenological model was established to predict variation of the strain-rate sensitivity coefficient for Cu–50Ta alloy under dynamic compression. A Johnson–Cook constitutive model was established to predict the equivalent stress–equivalent plastic strain relationship under extreme deformation (high temperature and strain-rate). The results showed that the plastic deformation behavior of Cu–50Ta alloy was affected by temperature, strain-rate, and strain. The material exhibited obvious strain-rate strengthening and thermal softening. As the strain-rate increased, the yield strength logarithmically increased. At a temperature of 286 K, the strain-rate increased from 0.01 s−1 to 6200 s−1, and the yield strength increased from 543.75 MPa to 881.13 MPa. In addition, the yield strength linearly decreased as the deformation temperature increased. Under conditions of dynamic deformation, the variation of strain-rate sensitivity coefficient could be expressed as a function of strain-rate and strain. The phenomenological model accurately described the variation of the strain-rate sensitivity coefficient of Cu–50Ta under dynamic deformation conditions. The Johnson–Cook constitutive parameters, calibrated by experimental data, described the plastic deformation behavior of the alloy under high-velocity impact.


Author(s):  
Swagata Banerjee

Abstract: Smart Seat: When a person seats on a seat, certain amount of pressure is applied on it. If we install certain amount of piezoelectric sensor in a seat. With the help of pressure, we can generate voltage. Piezoelectric sensor is a device that uses the piezoelectric effect, to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. Using the sensor under the seat the pressure generated by a person seated on a chair can be sensed by sensor and generate electricity. Mainly piezoelectric material that can generate a voltage proportional to the stress applied upon it. This paper is based around this process. There will be springs attached under the seat also. When pressure is applied on the spring there will be equal pressure applied on a sensor which is attached in the bottom of every spring. With this we can generate a considerable amount of voltage to use it in future by storing it in a rechargeable battery. If the pressure is more applied on the sensor, then we can generate more voltage through the process. Keywords: Sensor, Battery, Piezoelectric, Seat, pressure.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Calvin Robert Lear ◽  
Jonathan Gregory Gigax ◽  
Matthew M. Schneider ◽  
Todd Edward Steckley ◽  
Thomas J. Lienert ◽  
...  

Joining nanostructured ferritic alloys (NFAs) has proved challenging, as the nano-oxides that provide superior strength, creep resistance, and radiation tolerance at high temperatures tend to agglomerate, redistribute, and coarsen during conventional fusion welding. In this study, capacitive discharge resistance welding (CDRW)—a solid-state variant of resistance welding—was used to join end caps and thin-walled cladding tubes of the NFA 14YWT. The resulting solid-state joints were found to be hermetically sealed and were characterized across the weld region using electron microscopy (macroscopic, microscopic, and nanometer scales) and nanoindentation. Microstructural evolution near the weld line was limited to narrow (~50–200 μm) thermo-mechanically affected zones (TMAZs) and to a reduction in pre-existing component textures. Dispersoid populations (i.e., nano-oxides and larger oxide particles) appeared unchanged by all but the highest energy and power CDRW condition, with this extreme producing only minor nano-oxide coarsening (~2 nm → ~5 nm Ø). Despite a minimal microstructural change, the TMAZs were found to be ~10% softer than the surrounding base material. These findings are considered in terms of past solid-state welding (SSW) efforts—cladding applications and NFA-like materials in particular—and in terms of strengthening mechanisms in NFAs and the potential impacts of localized temperature–strain conditions during SSW.


2021 ◽  
Vol 147 ◽  
pp. 106723
Author(s):  
Xiang Guo ◽  
Yingtao Yuan ◽  
Tao Suo ◽  
Xin Su ◽  
Yan Liu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lei Xu ◽  
Fengqiang Gong

In deep mining and excavation of tunnels with high geothermal, the surrounding rock is not only subjected to high ground stress but also subjected to high temperature. Temperature will change mechanical characteristics and energy storage capacity of rocks, as well as increase the destructiveness and randomness of rockburst. To reveal the mechanism of high-temperature strain burst in deep rock, the rockburst tests from uniaxial compression to three-dimensional compression were reviewed, and the research results of the minimum principal stress rapid unloading, true-triaxial loading with one free face, and dynamic disturbance triggered pre-heated granite rockburst simulation tests were focused on. According to the occurrence state of country rock for deep high-temperature and stress state in the whole process during excavation, six development directions for high-temperature strain rockburst simulation tests were proposed: (1) constructing the damage constitutive models of high-temperature rocks according to linear energy dissipation law; (2) developing the true triaxial rockburst simulation testing system accomplishing the function of “real-time high temperature + unloading + dynamic disturbance”; (3) considering the true triaxial rockburst simulation test after microwave irradiation; (4) developing the real-time high-temperature rockburst simulation testing device for large-size specimens and internal unloading; (5) focusing on the energy actuating mechanism for deep high-temperature rock failure via rockburst simulation tests; and (6) implementing the three-dimensional rockburst simulation test on the basis of deep in situ coring.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6169
Author(s):  
Nazila Safari Yazd ◽  
Jennifer Kawakami ◽  
Alireza Izaddoost ◽  
Patrice Mégret

We present a calibration procedure for a humidity sensor made of a fiber Bragg grating covered by a polyimide layer. FBGs being intrinsically sensitive to temperature and strain, the calibration should tackle three variables, and, therefore, consists of a three-variable, two-level factorial design tailored to assess the three main sensitivities, as well as the five cross-sensitivities. FBG sensing information is encoded in the reflection spectrum from which the Bragg wavelength should be extracted. We tested six classical peak tracking methods on the results of the factorial design of the experiment applied to a homemade FBG humidity sensor. We used Python programming to compute, from the raw spectral data with six typical peak search algorithms, the temperature, strain and humidity sensitivities, as well as the cross-sensitivities, and showed that results are consistent for all algorithms, provided that the points selected to make the computation are correctly chosen. The best results for this particular sensor are obtained with a 3 dB threshold, whatever the peak search method used, and allow to compute the effective humidity sensitivity taking into account the combined effect of temperature and strain. The calibration procedure presented here is nevertheless generic and can thus be adapted to other sensors.


Sign in / Sign up

Export Citation Format

Share Document