The Effects of Experimental Diabetes on the Cytochrome P450 System and Other Metabolic Pathways

2018 ◽  
pp. 79-116
Author(s):  
Costas Ioannides ◽  
Peter R. Flatt ◽  
Christopher R. Barnett
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Lucie Dlouhá ◽  
Věra Adámková ◽  
Lenka Šedová ◽  
Věra Olišarová ◽  
Jaroslav A. Hubáček ◽  
...  

AbstractObjectivesCytochromes P450 play a role in human drugs metabolic pathways and their genes are among the most variable in humans. The aim of this study was to analyze genotype frequencies of five common polymorphisms of cytochromes P450 in Roma/Gypsy and Czech (non-Roma) population samples with Czech origin.MethodsRoma/Gypsy (n=302) and Czech subjects (n=298) were genotyped for CYP1A2 (rs762551), CYP2A6 (rs4105144), CYP2B6 (rs3745274) and CYP2D6 (rs3892097; rs1065852) polymorphisms using PCR-RFLP or Taqman assay.ResultsWe found significant allelic/genotype differences between ethnics in three genes. For rs3745274 polymorphism, there was increased frequency of T allele carriers in Roma in comparison with Czech population (53.1 vs. 43.7%; p=0.02). For rs4105144 (CYP2A6) there was higher frequency of T allele carriers in Roma in comparison with Czech population (68.7 vs. 49.8%; p<0.0001). For rs3892097 (CYP2D6) there was more carriers of the A allele between Roma in comparison with Czech population (39.2 vs. 38.2%; p=0.048). Genotype/allelic frequencies of CYP2D6 (rs1065852) and CYP1A2 (rs762551) variants did not significantly differ between the ethnics.ConclusionsThere were significant differences in allelic/genotype frequencies of some, but not all cytochromes P450 polymorphisms between the Czech Roma/Gypsies and Czech non-Roma subjects.


Author(s):  
Michal Schwartzman ◽  
Mairead A. Carroll ◽  
David Sacerdoti ◽  
Nader G. Abraham ◽  
John C. McGiff

2019 ◽  
Vol 125 (3) ◽  
pp. 356-366 ◽  
Author(s):  
Grazyna Kwapiszewska ◽  
Anne Katrine Z. Johansen ◽  
Jose Gomez-Arroyo ◽  
Norbert F. Voelkel

2013 ◽  
Vol 45 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Marilyn N. Martinez ◽  
Leposava Antonovic ◽  
Michael Court ◽  
Mauro Dacasto ◽  
Johanna Fink-Gremmels ◽  
...  

Open Biology ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 180091 ◽  
Author(s):  
Lisha Yu ◽  
Xiaojing Yang ◽  
Bo Ma ◽  
Hanjie Ying ◽  
Xuejun Shang ◽  
...  

Asthenozoospermia is a common cause of male infertility, the aetiology of which remains unclear in 50–60% of cases. The current study aimed to characterize metabolic alterations in asthenozoospermic seminal plasma and to explore the signalling pathways involved in sperm motility regulation. At first, high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry was used to detect the targeted metabolic network of arachidonic acid (AA). Metabolomic multivariate data analysis showed significant distinction of AA metabolites between asthenozoospermic and healthy seminal plasma. AA as well as its lipoxygenase (LOX) and cytochrome P450 metabolites were found to be abnormally increased, while cyclooxygenase (COX) metabolites were complicatedly disturbed in asthenozoospermic volunteers compared with those in healthy ones. In vitro experiments and western blot analysis of sperm cells revealed a decrease in sperm motility and upregulation of sperm phosphor-P38 induced by AA. P38 inhibitor could increase AA-reduced sperm motility. Also, all the inhibitors of the three metabolic pathways of AA could block AA-induced P38 mitogen-activated protein kinase (MAPK) activation and further improve sperm motility. We report here for the first time that an abnormal AA metabolic network could reduce sperm motility via P38 MAPK activation through the LOX, cytochrome P450 and COX metabolic pathways, which might be an underlying pathomechanism of asthenozoospermia.


Sign in / Sign up

Export Citation Format

Share Document